sunnychenxiwang's picture
Upload 1600 files
14c9181 verified

A newer version of the Gradio SDK is available: 5.9.1

Upgrade

Inference

In OpenMMLab, all the inference operations are unified into a new interface - Inferencer. Inferencer is designed to expose a neat and simple API to users, and shares very similar interface across different OpenMMLab libraries.

In MMOCR, Inferencers are constructed in different levels of task abstraction.

  • Standard Inferencer: Following OpenMMLab's convention, each fundamental task in MMOCR has a standard Inferencer, namely TextDetInferencer (text detection), TextRecInferencer (text recognition), TextSpottingInferencer (end-to-end OCR), and KIEInferencer (key information extraction). They are designed to perform inference on a single task, and can be chained together to perform inference on a series of tasks. They also share very similar interface, have standard input/output protocol, and overall follow the OpenMMLab design.
  • MMOCRInferencer: We also provide MMOCRInferencer, a convenient inference interface only designed for MMOCR. It encapsulates and chains all the Inferencers in MMOCR, so users can use this Inferencer to perform a series of tasks on an image and directly get the final result in an end-to-end manner. However, it has a relatively different interface from other standard Inferencers, and some of standard Inferencer functionalities might be sacrificed for the sake of simplicity.

For new users, we recommend using MMOCRInferencer to test out different combinations of models.

If you are a developer and wish to integrate the models into your own project, we recommend using standard Inferencers, as they are more flexible and standardized, equipped with full functionalities.

Basic Usage


````{group-tab} MMOCRInferencer

As of now, `MMOCRInferencer` can perform inference on the following tasks:

- Text detection
- Text recognition
- OCR (text detection + text recognition)
- Key information extraction (text detection + text recognition + key information extraction)
- *OCR (text spotting)* (coming soon)

For convenience, `MMOCRInferencer` provides both Python and command line interfaces. For example, if you want to perform OCR inference on `demo/demo_text_ocr.jpg` with `DBNet` as the text detection model and `CRNN` as the text recognition model, you can simply run the following command:

::::{tabs}

:::{code-tab} python
>>> from mmocr.apis import MMOCRInferencer
>>> # Load models into memory
>>> ocr = MMOCRInferencer(det='DBNet', rec='SAR')
>>> # Perform inference
>>> ocr('demo/demo_text_ocr.jpg', show=True)
:::

:::{code-tab} bash
python tools/infer.py demo/demo_text_ocr.jpg --det DBNet --rec SAR --show
:::
::::

The resulting OCR output will be displayed in a new window:

<div align="center">
    <img src="https://user-images.githubusercontent.com/22607038/220563262-e9c1ab52-9b96-4d9c-bcb6-f55ff0b9e1be.png" height="250"/>
</div>

```{note}
If you are running MMOCR on a server without GUI or via SSH tunnel with X11 forwarding disabled, the `show` option will not work. However, you can still save visualizations to files by setting `out_dir` and `save_vis=True` arguments. Read [Dumping Results](#dumping-results) for details.
```

Depending on the initialization arguments, `MMOCRInferencer` can run in different modes. For example, it can run in KIE mode if it is initialized with `det`, `rec` and `kie` specified.

::::{tabs}

:::{code-tab} python
>>> kie = MMOCRInferencer(det='DBNet', rec='SAR', kie='SDMGR')
>>> kie('demo/demo_kie.jpeg', show=True)
:::

:::{code-tab} bash
python tools/infer.py demo/demo_kie.jpeg --det DBNet --rec SAR --kie SDMGR --show
:::

::::

The output image should look like this:

<div align="center">
    <img src="https://user-images.githubusercontent.com/22607038/220569700-fd4894bc-f65a-405e-95e7-ebd2d614aedd.png" height="250"/>
</div>
<br />

You may have found that the Python interface and the command line interface of `MMOCRInferencer` are very similar. The following sections will use the Python interface as an example to introduce the usage of `MMOCRInferencer`. For more information about the command line interface, please refer to [Command Line Interface](#command-line-interface).

````

````{group-tab} Standard Inferencer

In general, all the standard Inferencers across OpenMMLab share a very similar interface. The following example shows how to use `TextDetInferencer` to perform inference on a single image.

```python
>>> from mmocr.apis import TextDetInferencer
>>> # Load models into memory
>>> inferencer = TextDetInferencer(model='DBNet')
>>> # Inference
>>> inferencer('demo/demo_text_ocr.jpg', show=True)
```

The visualization result should look like:

<div align="center">
    <img src="https://user-images.githubusercontent.com/22607038/221418215-2431d0e9-e16e-4deb-9c52-f8b86801706a.png" height="250"/>
</div>

````

Initialization

Each Inferencer must be initialized with a model. You can also choose the inference device during initialization.

Model Initialization


````{group-tab} MMOCRInferencer

For each task, `MMOCRInferencer` takes two arguments in the form of `xxx` and `xxx_weights` (e.g. `det` and `det_weights`) for initialization, and there are many ways to initialize a model for inference. We will take `det` and `det_weights` as an example to illustrate some typical ways to initialize a model.

- To infer with MMOCR's pre-trained model, passing its name to the argument `det` can work. The weights will be automatically downloaded and loaded from OpenMMLab's model zoo. Check [Weights](../modelzoo.md#weights) for available model names.

  ```python
  >>> MMOCRInferencer(det='DBNet')
  ```

- To load custom config and weight, you can pass the path to the config file to `det` and the path to the weight to `det_weights`.

  ```python
  >>> MMOCRInferencer(det='path/to/dbnet_config.py', det_weights='path/to/dbnet.pth')
  ```

You may click on the "Standard Inferencer" tab to find more initialization methods.

````

````{group-tab} Standard Inferencer

Every standard `Inferencer` accepts two parameters, `model` and `weights`. (In `MMOCRInferencer`, they are referred to as `xxx` and `xxx_weights`)

- `model` takes either the name of a model, or the path to a config file as input. The name of a model is obtained from the model's metafile ([Example](https://github.com/open-mmlab/mmocr/blob/1.x/configs/textdet/dbnet/metafile.yml)) indexed from [model-index.yml](https://github.com/open-mmlab/mmocr/blob/1.x/model-index.yml). You can find the list of available weights [here](../modelzoo.md#weights).

- `weights` accepts the path to a weight file.

<br />

There are various ways to initialize a model.

- To infer with MMOCR's pre-trained model,  you can pass its name to `model`. The weights will be automatically downloaded and loaded from OpenMMLab's model zoo.

  ```python
  >>> from mmocr.apis import TextDetInferencer
  >>> inferencer = TextDetInferencer(model='DBNet')
  ```

  ```{note}
  The model type must match the Inferencer type.
  ```

  You can load another weight by passing its path/url to `weights`.

  ```python
  >>> inferencer = TextDetInferencer(model='DBNet', weights='path/to/dbnet.pth')
  ```

- To load custom config and weight, you can pass the path to the config file to `model` and the path to the weight to `weights`.

  ```python
  >>> inferencer = TextDetInferencer(model='path/to/dbnet_config.py', weights='path/to/dbnet.pth')
  ```

- By default, [MMEngine](https://github.com/open-mmlab/mmengine/) dumps config to the weight. If you have a weight trained on MMEngine, you can also pass the path to the weight file to `weights` without specifying `model`:

  ```python
  >>> # It will raise an error if the config file cannot be found in the weight
  >>> inferencer = TextDetInferencer(weights='path/to/dbnet.pth')
  ```

- Passing config file to `model` without specifying `weight` will result in a randomly initialized model.

````

Device

Each Inferencer instance is bound to a device. By default, the best device is automatically decided by MMEngine. You can also alter the device by specifying the device argument. For example, you can use the following code to create an Inferencer on GPU 1.


````{group-tab} MMOCRInferencer

```python
>>> inferencer = MMOCRInferencer(det='DBNet', device='cuda:1')
```

````

````{group-tab} Standard Inferencer

```python
>>> inferencer = TextDetInferencer(model='DBNet', device='cuda:1')
```

````

To create an Inferencer on CPU:


````{group-tab} MMOCRInferencer

```python
>>> inferencer = MMOCRInferencer(det='DBNet', device='cpu')
```

````

````{group-tab} Standard Inferencer

```python
>>> inferencer = TextDetInferencer(model='DBNet', device='cpu')
```

````

Refer to torch.device for all the supported forms.

Inference

Once the Inferencer is initialized, you can directly pass in the raw data to be inferred and get the inference results from return values.

Input


````{tab} MMOCRInferencer / TextDetInferencer / TextRecInferencer / TextSpottingInferencer

Input can be either of these types:

- str: Path/URL to the image.

  ```python
  >>> inferencer('demo/demo_text_ocr.jpg')
  ```

- array: Image in numpy array. It should be in BGR order.

  ```python
  >>> import mmcv
  >>> array = mmcv.imread('demo/demo_text_ocr.jpg')
  >>> inferencer(array)
  ```

- list: A list of basic types above. Each element in the list will be processed separately.

  ```python
  >>> inferencer(['img_1.jpg', 'img_2.jpg])
  >>> # You can even mix the types
  >>> inferencer(['img_1.jpg', array])
  ```

- str: Path to the directory. All images in the directory will be processed.

  ```python
  >>> inferencer('tests/data/det_toy_dataset/imgs/test/')
  ```

````

````{tab} KIEInferencer

Input can be a dict or list[dict], where each dictionary contains
following keys:

- `img` (str or ndarray): Path to the image or the image itself. If KIE Inferencer is used in no-visual mode, this key is not required.
If it's an numpy array, it should be in BGR order.
- `img_shape` (tuple(int, int)): Image shape in (H, W). Only required when KIE Inferencer is used in no-visual mode and no `img` is provided.
- `instances` (list[dict]): A list of instances.

Each `instance` looks like the following:

```python
{
    # A nested list of 4 numbers representing the bounding box of
    # the instance, in (x1, y1, x2, y2) order.
    "bbox": np.array([[x1, y1, x2, y2], [x1, y1, x2, y2], ...],
                    dtype=np.int32),

    # List of texts.
    "texts": ['text1', 'text2', ...],
}
```

````

Output

By default, each Inferencer returns the prediction results in a dictionary format.

  • visualization contains the visualized predictions. But it's an empty list by default unless return_vis=True.

  • predictions contains the predictions results in a json-serializable format. As presented below, the contents are slightly different depending on the task type.

    
    :::{group-tab} MMOCRInferencer
    
    ```python
    {
        'predictions' : [
          # Each instance corresponds to an input image
          {
            'det_polygons': [...],  # 2d list of length (N,), format: [x1, y1, x2, y2, ...]
            'det_scores': [...],  # float list of length (N,)
            'det_bboxes': [...],   # 2d list of shape (N, 4), format: [min_x, min_y, max_x, max_y]
            'rec_texts': [...],  # str list of length (N,)
            'rec_scores': [...],  # float list of length (N,)
            'kie_labels': [...],  # node labels, length (N, )
            'kie_scores': [...],  # node scores, length (N, )
            'kie_edge_scores': [...],  # edge scores, shape (N, N)
            'kie_edge_labels': [...]  # edge labels, shape (N, N)
          },
          ...
        ],
        'visualization' : [
          array(..., dtype=uint8),
        ]
    }
    ```
    
    :::
    
    :::{group-tab} Standard Inferencer
    
    ````{tabs}
    ```{code-tab} python TextDetInferencer
    
    {
        'predictions' : [
          # Each instance corresponds to an input image
          {
            'polygons': [...],  # 2d list of len (N,) in the format of [x1, y1, x2, y2, ...]
            'bboxes': [...],  # 2d list of shape (N, 4), in the format of [min_x, min_y, max_x, max_y]
            'scores': [...]  # list of float, len (N, )
          },
        ]
        'visualization' : [
          array(..., dtype=uint8),
        ]
    }
    ```
    
    ```{code-tab} python TextRecInferencer
    {
        'predictions' : [
          # Each instance corresponds to an input image
          {
            'text': '...',  # a string
            'scores': 0.1,  # a float
          },
          ...
        ]
        'visualization' : [
          array(..., dtype=uint8),
        ]
    }
    ```
    
    ```{code-tab} python TextSpottingInferencer
    {
        'predictions' : [
          # Each instance corresponds to an input image
          {
            'polygons': [...],  # 2d list of len (N,) in the format of [x1, y1, x2, y2, ...]
            'bboxes': [...],  # 2d list of shape (N, 4), in the format of [min_x, min_y, max_x, max_y]
            'scores': [...]  # list of float, len (N, )
            'texts': ['...',]  # list of texts, len (N, )
          },
        ]
        'visualization' : [
          array(..., dtype=uint8),
        ]
    }
    ```
    
    ```{code-tab} python KIEInferencer
    {
        'predictions' : [
          # Each instance corresponds to an input image
          {
            'labels': [...],  # node label, len (N,)
            'scores': [...],  # node scores, len (N, )
            'edge_scores': [...],  # edge scores, shape (N, N)
            'edge_labels': [...],  # edge labels, shape (N, N)
          },
        ]
        'visualization' : [
          array(..., dtype=uint8),
        ]
    }
    ```
    ````
    
    :::
    

If you wish to get the raw outputs from the model, you can set return_datasamples to True to get the original DataSample, which will be stored in predictions.

Dumping Results

Apart from obtaining predictions from the return value, you can also export the predictions/visualizations to files by setting out_dir and save_pred/save_vis arguments.

>>> inferencer('img_1.jpg', out_dir='outputs/', save_pred=True, save_vis=True)

Results in the directory structure like:

outputs
β”œβ”€β”€ preds
β”‚   └── img_1.json
└── vis
    └── img_1.jpg

The filename of each file is the same as the corresponding input image filename. If the input image is an array, the filename will be a number starting from 0.

Batch Inference

You can customize the batch size by setting batch_size. The default batch size is 1.

API

Here are extensive lists of parameters that you can use.


```{group-tab} MMOCRInferencer

**MMOCRInferencer.\_\_init\_\_():**

| Arguments     | Type                                                 | Default | Description                                                                                                                                                                      |
| ------------- | ---------------------------------------------------- | ------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `det`         | str or [Weights](../modelzoo.html#weights), optional | None    | Pretrained text detection algorithm. It's the path to the config file or the model name defined in metafile.                                                                     |
| `det_weights` | str, optional                                        | None    | Path to the custom checkpoint file of the selected det model. If it is not specified and "det" is a model name of metafile, the weights will be loaded from metafile.            |
| `rec`         | str or [Weights](../modelzoo.html#weights), optional | None    | Pretrained text recognition algorithm. It’s the path to the config file or the model name defined in metafile.                                                                   |
| `rec_weights` | str, optional                                        | None    | Path to the custom checkpoint file of the selected rec model. If it is not specified and β€œrec” is a model name of metafile, the weights will be loaded from metafile.            |
| `kie` \[1\]   | str or [Weights](../modelzoo.html#weights), optional | None    | Pretrained key information extraction algorithm. It’s the path to the config file or the model name defined in metafile.                                                         |
| `kie_weights` | str, optional                                        | None    | Path to the custom checkpoint file of the selected kie model. If it is not specified and β€œkie” is a model name of metafile, the weights will be loaded from metafile.            |
| `device`      | str, optional                                        | None    | Device used for inference, accepting all allowed strings by `torch.device`. E.g., 'cuda:0' or 'cpu'. If None, the available device will be automatically used. Defaults to None. |

\[1\]: `kie` is only effective when both text detection and recognition models are specified.

**MMOCRInferencer.\_\_call\_\_()**

| Arguments            | Type                    | Default      | Description                                                                                      |
| -------------------- | ----------------------- | ------------ | ------------------------------------------------------------------------------------------------ |
| `inputs`             | str/list/tuple/np.array | **required** | It can be a path to an image/a folder, an np array or a list/tuple (with img paths or np arrays) |
| `return_datasamples` | bool                    | False        | Whether to return results as DataSamples. If False, the results will be packed into a dict.      |
| `batch_size`         | int                     | 1            | Inference batch size.                                                                            |
| `det_batch_size`     | int, optional           | None         | Inference batch size for text detection model. Overwrite batch_size if it is not None.           |
| `rec_batch_size`     | int, optional           | None         | Inference batch size for text recognition model. Overwrite batch_size if it is not None.         |
| `kie_batch_size`     | int, optional           | None         | Inference batch size for KIE model. Overwrite batch_size if it is not None.                      |
| `return_vis`         | bool                    | False        | Whether to return the visualization result.                                                      |
| `print_result`       | bool                    | False        | Whether to print the inference result to the console.                                            |
| `show`               | bool                    | False        | Whether to display the visualization results in a popup window.                                  |
| `wait_time`          | float                   | 0            | The interval of show(s).                                                                         |
| `out_dir`            | str                     | `results/`   | Output directory of results.                                                                     |
| `save_vis`           | bool                    | False        | Whether to save the visualization results to `out_dir`.                                          |
| `save_pred`          | bool                    | False        | Whether to save the inference results to `out_dir`.                                              |

```

```{group-tab} Standard Inferencer

**Inferencer.\_\_init\_\_():**

| Arguments | Type                                                 | Default | Description                                                                                                                                                                      |
| --------- | ---------------------------------------------------- | ------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `model`   | str or [Weights](../modelzoo.html#weights), optional | None    | Path to the config file or the model name defined in metafile.                                                                                                                   |
| `weights` | str, optional                                        | None    | Path to the custom checkpoint file of the selected det model. If it is not specified and "det" is a model name of metafile, the weights will be loaded from metafile.            |
| `device`  | str, optional                                        | None    | Device used for inference, accepting all allowed strings by `torch.device`. E.g., 'cuda:0' or 'cpu'. If None, the available device will be automatically used. Defaults to None. |

**Inferencer.\_\_call\_\_()**

| Arguments            | Type                    | Default      | Description                                                                                                      |
| -------------------- | ----------------------- | ------------ | ---------------------------------------------------------------------------------------------------------------- |
| `inputs`             | str/list/tuple/np.array | **required** | It can be a path to an image/a folder, an np array or a list/tuple (with img paths or np arrays)                 |
| `return_datasamples` | bool                    | False        | Whether to return results as DataSamples. If False, the results will be packed into a dict.                      |
| `batch_size`         | int                     | 1            | Inference batch size.                                                                                            |
| `progress_bar`       | bool                    | True         | Whether to show a progress bar.                                                                                  |
| `return_vis`         | bool                    | False        | Whether to return the visualization result.                                                                      |
| `print_result`       | bool                    | False        | Whether to print the inference result to the console.                                                            |
| `show`               | bool                    | False        | Whether to display the visualization results in a popup window.                                                  |
| `wait_time`          | float                   | 0            | The interval of show(s).                                                                                         |
| `draw_pred`          | bool                    | True         | Whether to draw predicted bounding boxes. *Only applicable on `TextDetInferencer` and `TextSpottingInferencer`.* |
| `out_dir`            | str                     | `results/`   | Output directory of results.                                                                                     |
| `save_vis`           | bool                    | False        | Whether to save the visualization results to `out_dir`.                                                          |
| `save_pred`          | bool                    | False        | Whether to save the inference results to `out_dir`.                                                              |

```

Command Line Interface

This section is only applicable to `MMOCRInferencer`.

You can use tools/infer.py to perform inference through MMOCRInferencer. Its general usage is as follows:

python tools/infer.py INPUT_PATH [--det DET] [--det-weights ...] ...

where INPUT_PATH is a required field, which should be a path to an image or a folder. Command-line parameters follow the mapping relationship with the Python interface parameters as follows:

  • To convert the Python interface parameters to the command line ones, you need to add two -- in front of the Python interface parameters, and replace the underscore _ with the hyphen -. For example, out_dir becomes --out-dir.
  • For boolean type parameters, putting the parameter in the command is equivalent to specifying it as True. For example, --show will specify the show parameter as True.

In addition, the command line will not display the inference result by default. You can use the --print-result parameter to view the inference result.

Here is an example:

python tools/infer.py demo/demo_text_ocr.jpg --det DBNet --rec SAR --show --print-result

Running this command will give the following result:

{'predictions': [{'rec_texts': ['CBank', 'Docbcba', 'GROUP', 'MAUN', 'CROBINSONS', 'AOCOC', '916M3', 'BOO9', 'Oven', 'BRANDS', 'ARETAIL', '14', '70<UKN>S', 'ROUND', 'SALE', 'YEAR', 'ALLY', 'SALE', 'SALE'],
'rec_scores': [0.9753464579582214, ...], 'det_polygons': [[551.9930285844646, 411.9138765335083, 553.6153911653112,
383.53195309638977, 620.2410061195247, 387.33785033226013, 618.6186435386782, 415.71977376937866], ...], 'det_scores': [0.8230461478233337, ...]}]}