Spaces:
Sleeping
Sleeping
# Natural Language Toolkit: IBM Model 4 | |
# | |
# Copyright (C) 2001-2023 NLTK Project | |
# Author: Tah Wei Hoon <[email protected]> | |
# URL: <https://www.nltk.org/> | |
# For license information, see LICENSE.TXT | |
""" | |
Translation model that reorders output words based on their type and | |
distance from other related words in the output sentence. | |
IBM Model 4 improves the distortion model of Model 3, motivated by the | |
observation that certain words tend to be re-ordered in a predictable | |
way relative to one another. For example, <adjective><noun> in English | |
usually has its order flipped as <noun><adjective> in French. | |
Model 4 requires words in the source and target vocabularies to be | |
categorized into classes. This can be linguistically driven, like parts | |
of speech (adjective, nouns, prepositions, etc). Word classes can also | |
be obtained by statistical methods. The original IBM Model 4 uses an | |
information theoretic approach to group words into 50 classes for each | |
vocabulary. | |
Terminology | |
----------- | |
:Cept: | |
A source word with non-zero fertility i.e. aligned to one or more | |
target words. | |
:Tablet: | |
The set of target word(s) aligned to a cept. | |
:Head of cept: | |
The first word of the tablet of that cept. | |
:Center of cept: | |
The average position of the words in that cept's tablet. If the | |
value is not an integer, the ceiling is taken. | |
For example, for a tablet with words in positions 2, 5, 6 in the | |
target sentence, the center of the corresponding cept is | |
ceil((2 + 5 + 6) / 3) = 5 | |
:Displacement: | |
For a head word, defined as (position of head word - position of | |
previous cept's center). Can be positive or negative. | |
For a non-head word, defined as (position of non-head word - | |
position of previous word in the same tablet). Always positive, | |
because successive words in a tablet are assumed to appear to the | |
right of the previous word. | |
In contrast to Model 3 which reorders words in a tablet independently of | |
other words, Model 4 distinguishes between three cases. | |
1. Words generated by NULL are distributed uniformly. | |
2. For a head word t, its position is modeled by the probability | |
d_head(displacement | word_class_s(s),word_class_t(t)), | |
where s is the previous cept, and word_class_s and word_class_t maps | |
s and t to a source and target language word class respectively. | |
3. For a non-head word t, its position is modeled by the probability | |
d_non_head(displacement | word_class_t(t)) | |
The EM algorithm used in Model 4 is: | |
:E step: In the training data, collect counts, weighted by prior | |
probabilities. | |
- (a) count how many times a source language word is translated | |
into a target language word | |
- (b) for a particular word class, count how many times a head | |
word is located at a particular displacement from the | |
previous cept's center | |
- (c) for a particular word class, count how many times a | |
non-head word is located at a particular displacement from | |
the previous target word | |
- (d) count how many times a source word is aligned to phi number | |
of target words | |
- (e) count how many times NULL is aligned to a target word | |
:M step: Estimate new probabilities based on the counts from the E step | |
Like Model 3, there are too many possible alignments to consider. Thus, | |
a hill climbing approach is used to sample good candidates. | |
Notations | |
--------- | |
:i: Position in the source sentence | |
Valid values are 0 (for NULL), 1, 2, ..., length of source sentence | |
:j: Position in the target sentence | |
Valid values are 1, 2, ..., length of target sentence | |
:l: Number of words in the source sentence, excluding NULL | |
:m: Number of words in the target sentence | |
:s: A word in the source language | |
:t: A word in the target language | |
:phi: Fertility, the number of target words produced by a source word | |
:p1: Probability that a target word produced by a source word is | |
accompanied by another target word that is aligned to NULL | |
:p0: 1 - p1 | |
:dj: Displacement, Δj | |
References | |
---------- | |
Philipp Koehn. 2010. Statistical Machine Translation. | |
Cambridge University Press, New York. | |
Peter E Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and | |
Robert L. Mercer. 1993. The Mathematics of Statistical Machine | |
Translation: Parameter Estimation. Computational Linguistics, 19 (2), | |
263-311. | |
""" | |
import warnings | |
from collections import defaultdict | |
from math import factorial | |
from nltk.translate import AlignedSent, Alignment, IBMModel, IBMModel3 | |
from nltk.translate.ibm_model import Counts, longest_target_sentence_length | |
class IBMModel4(IBMModel): | |
""" | |
Translation model that reorders output words based on their type and | |
their distance from other related words in the output sentence | |
>>> bitext = [] | |
>>> bitext.append(AlignedSent(['klein', 'ist', 'das', 'haus'], ['the', 'house', 'is', 'small'])) | |
>>> bitext.append(AlignedSent(['das', 'haus', 'war', 'ja', 'groß'], ['the', 'house', 'was', 'big'])) | |
>>> bitext.append(AlignedSent(['das', 'buch', 'ist', 'ja', 'klein'], ['the', 'book', 'is', 'small'])) | |
>>> bitext.append(AlignedSent(['ein', 'haus', 'ist', 'klein'], ['a', 'house', 'is', 'small'])) | |
>>> bitext.append(AlignedSent(['das', 'haus'], ['the', 'house'])) | |
>>> bitext.append(AlignedSent(['das', 'buch'], ['the', 'book'])) | |
>>> bitext.append(AlignedSent(['ein', 'buch'], ['a', 'book'])) | |
>>> bitext.append(AlignedSent(['ich', 'fasse', 'das', 'buch', 'zusammen'], ['i', 'summarize', 'the', 'book'])) | |
>>> bitext.append(AlignedSent(['fasse', 'zusammen'], ['summarize'])) | |
>>> src_classes = {'the': 0, 'a': 0, 'small': 1, 'big': 1, 'house': 2, 'book': 2, 'is': 3, 'was': 3, 'i': 4, 'summarize': 5 } | |
>>> trg_classes = {'das': 0, 'ein': 0, 'haus': 1, 'buch': 1, 'klein': 2, 'groß': 2, 'ist': 3, 'war': 3, 'ja': 4, 'ich': 5, 'fasse': 6, 'zusammen': 6 } | |
>>> ibm4 = IBMModel4(bitext, 5, src_classes, trg_classes) | |
>>> print(round(ibm4.translation_table['buch']['book'], 3)) | |
1.0 | |
>>> print(round(ibm4.translation_table['das']['book'], 3)) | |
0.0 | |
>>> print(round(ibm4.translation_table['ja'][None], 3)) | |
1.0 | |
>>> print(round(ibm4.head_distortion_table[1][0][1], 3)) | |
1.0 | |
>>> print(round(ibm4.head_distortion_table[2][0][1], 3)) | |
0.0 | |
>>> print(round(ibm4.non_head_distortion_table[3][6], 3)) | |
0.5 | |
>>> print(round(ibm4.fertility_table[2]['summarize'], 3)) | |
1.0 | |
>>> print(round(ibm4.fertility_table[1]['book'], 3)) | |
1.0 | |
>>> print(round(ibm4.p1, 3)) | |
0.033 | |
>>> test_sentence = bitext[2] | |
>>> test_sentence.words | |
['das', 'buch', 'ist', 'ja', 'klein'] | |
>>> test_sentence.mots | |
['the', 'book', 'is', 'small'] | |
>>> test_sentence.alignment | |
Alignment([(0, 0), (1, 1), (2, 2), (3, None), (4, 3)]) | |
""" | |
def __init__( | |
self, | |
sentence_aligned_corpus, | |
iterations, | |
source_word_classes, | |
target_word_classes, | |
probability_tables=None, | |
): | |
""" | |
Train on ``sentence_aligned_corpus`` and create a lexical | |
translation model, distortion models, a fertility model, and a | |
model for generating NULL-aligned words. | |
Translation direction is from ``AlignedSent.mots`` to | |
``AlignedSent.words``. | |
:param sentence_aligned_corpus: Sentence-aligned parallel corpus | |
:type sentence_aligned_corpus: list(AlignedSent) | |
:param iterations: Number of iterations to run training algorithm | |
:type iterations: int | |
:param source_word_classes: Lookup table that maps a source word | |
to its word class, the latter represented by an integer id | |
:type source_word_classes: dict[str]: int | |
:param target_word_classes: Lookup table that maps a target word | |
to its word class, the latter represented by an integer id | |
:type target_word_classes: dict[str]: int | |
:param probability_tables: Optional. Use this to pass in custom | |
probability values. If not specified, probabilities will be | |
set to a uniform distribution, or some other sensible value. | |
If specified, all the following entries must be present: | |
``translation_table``, ``alignment_table``, | |
``fertility_table``, ``p1``, ``head_distortion_table``, | |
``non_head_distortion_table``. See ``IBMModel`` and | |
``IBMModel4`` for the type and purpose of these tables. | |
:type probability_tables: dict[str]: object | |
""" | |
super().__init__(sentence_aligned_corpus) | |
self.reset_probabilities() | |
self.src_classes = source_word_classes | |
self.trg_classes = target_word_classes | |
if probability_tables is None: | |
# Get probabilities from IBM model 3 | |
ibm3 = IBMModel3(sentence_aligned_corpus, iterations) | |
self.translation_table = ibm3.translation_table | |
self.alignment_table = ibm3.alignment_table | |
self.fertility_table = ibm3.fertility_table | |
self.p1 = ibm3.p1 | |
self.set_uniform_probabilities(sentence_aligned_corpus) | |
else: | |
# Set user-defined probabilities | |
self.translation_table = probability_tables["translation_table"] | |
self.alignment_table = probability_tables["alignment_table"] | |
self.fertility_table = probability_tables["fertility_table"] | |
self.p1 = probability_tables["p1"] | |
self.head_distortion_table = probability_tables["head_distortion_table"] | |
self.non_head_distortion_table = probability_tables[ | |
"non_head_distortion_table" | |
] | |
for n in range(0, iterations): | |
self.train(sentence_aligned_corpus) | |
def reset_probabilities(self): | |
super().reset_probabilities() | |
self.head_distortion_table = defaultdict( | |
lambda: defaultdict(lambda: defaultdict(lambda: self.MIN_PROB)) | |
) | |
""" | |
dict[int][int][int]: float. Probability(displacement of head | |
word | word class of previous cept,target word class). | |
Values accessed as ``distortion_table[dj][src_class][trg_class]``. | |
""" | |
self.non_head_distortion_table = defaultdict( | |
lambda: defaultdict(lambda: self.MIN_PROB) | |
) | |
""" | |
dict[int][int]: float. Probability(displacement of non-head | |
word | target word class). | |
Values accessed as ``distortion_table[dj][trg_class]``. | |
""" | |
def set_uniform_probabilities(self, sentence_aligned_corpus): | |
""" | |
Set distortion probabilities uniformly to | |
1 / cardinality of displacement values | |
""" | |
max_m = longest_target_sentence_length(sentence_aligned_corpus) | |
# The maximum displacement is m-1, when a word is in the last | |
# position m of the target sentence and the previously placed | |
# word is in the first position. | |
# Conversely, the minimum displacement is -(m-1). | |
# Thus, the displacement range is (m-1) - (-(m-1)). Note that | |
# displacement cannot be zero and is not included in the range. | |
if max_m <= 1: | |
initial_prob = IBMModel.MIN_PROB | |
else: | |
initial_prob = 1 / (2 * (max_m - 1)) | |
if initial_prob < IBMModel.MIN_PROB: | |
warnings.warn( | |
"A target sentence is too long (" | |
+ str(max_m) | |
+ " words). Results may be less accurate." | |
) | |
for dj in range(1, max_m): | |
self.head_distortion_table[dj] = defaultdict( | |
lambda: defaultdict(lambda: initial_prob) | |
) | |
self.head_distortion_table[-dj] = defaultdict( | |
lambda: defaultdict(lambda: initial_prob) | |
) | |
self.non_head_distortion_table[dj] = defaultdict(lambda: initial_prob) | |
self.non_head_distortion_table[-dj] = defaultdict(lambda: initial_prob) | |
def train(self, parallel_corpus): | |
counts = Model4Counts() | |
for aligned_sentence in parallel_corpus: | |
m = len(aligned_sentence.words) | |
# Sample the alignment space | |
sampled_alignments, best_alignment = self.sample(aligned_sentence) | |
# Record the most probable alignment | |
aligned_sentence.alignment = Alignment( | |
best_alignment.zero_indexed_alignment() | |
) | |
# E step (a): Compute normalization factors to weigh counts | |
total_count = self.prob_of_alignments(sampled_alignments) | |
# E step (b): Collect counts | |
for alignment_info in sampled_alignments: | |
count = self.prob_t_a_given_s(alignment_info) | |
normalized_count = count / total_count | |
for j in range(1, m + 1): | |
counts.update_lexical_translation( | |
normalized_count, alignment_info, j | |
) | |
counts.update_distortion( | |
normalized_count, | |
alignment_info, | |
j, | |
self.src_classes, | |
self.trg_classes, | |
) | |
counts.update_null_generation(normalized_count, alignment_info) | |
counts.update_fertility(normalized_count, alignment_info) | |
# M step: Update probabilities with maximum likelihood estimates | |
# If any probability is less than MIN_PROB, clamp it to MIN_PROB | |
existing_alignment_table = self.alignment_table | |
self.reset_probabilities() | |
self.alignment_table = existing_alignment_table # don't retrain | |
self.maximize_lexical_translation_probabilities(counts) | |
self.maximize_distortion_probabilities(counts) | |
self.maximize_fertility_probabilities(counts) | |
self.maximize_null_generation_probabilities(counts) | |
def maximize_distortion_probabilities(self, counts): | |
head_d_table = self.head_distortion_table | |
for dj, src_classes in counts.head_distortion.items(): | |
for s_cls, trg_classes in src_classes.items(): | |
for t_cls in trg_classes: | |
estimate = ( | |
counts.head_distortion[dj][s_cls][t_cls] | |
/ counts.head_distortion_for_any_dj[s_cls][t_cls] | |
) | |
head_d_table[dj][s_cls][t_cls] = max(estimate, IBMModel.MIN_PROB) | |
non_head_d_table = self.non_head_distortion_table | |
for dj, trg_classes in counts.non_head_distortion.items(): | |
for t_cls in trg_classes: | |
estimate = ( | |
counts.non_head_distortion[dj][t_cls] | |
/ counts.non_head_distortion_for_any_dj[t_cls] | |
) | |
non_head_d_table[dj][t_cls] = max(estimate, IBMModel.MIN_PROB) | |
def prob_t_a_given_s(self, alignment_info): | |
""" | |
Probability of target sentence and an alignment given the | |
source sentence | |
""" | |
return IBMModel4.model4_prob_t_a_given_s(alignment_info, self) | |
# exposed for Model 5 to use | |
def model4_prob_t_a_given_s(alignment_info, ibm_model): | |
probability = 1.0 | |
MIN_PROB = IBMModel.MIN_PROB | |
def null_generation_term(): | |
# Binomial distribution: B(m - null_fertility, p1) | |
value = 1.0 | |
p1 = ibm_model.p1 | |
p0 = 1 - p1 | |
null_fertility = alignment_info.fertility_of_i(0) | |
m = len(alignment_info.trg_sentence) - 1 | |
value *= pow(p1, null_fertility) * pow(p0, m - 2 * null_fertility) | |
if value < MIN_PROB: | |
return MIN_PROB | |
# Combination: (m - null_fertility) choose null_fertility | |
for i in range(1, null_fertility + 1): | |
value *= (m - null_fertility - i + 1) / i | |
return value | |
def fertility_term(): | |
value = 1.0 | |
src_sentence = alignment_info.src_sentence | |
for i in range(1, len(src_sentence)): | |
fertility = alignment_info.fertility_of_i(i) | |
value *= ( | |
factorial(fertility) | |
* ibm_model.fertility_table[fertility][src_sentence[i]] | |
) | |
if value < MIN_PROB: | |
return MIN_PROB | |
return value | |
def lexical_translation_term(j): | |
t = alignment_info.trg_sentence[j] | |
i = alignment_info.alignment[j] | |
s = alignment_info.src_sentence[i] | |
return ibm_model.translation_table[t][s] | |
def distortion_term(j): | |
t = alignment_info.trg_sentence[j] | |
i = alignment_info.alignment[j] | |
if i == 0: | |
# case 1: t is aligned to NULL | |
return 1.0 | |
if alignment_info.is_head_word(j): | |
# case 2: t is the first word of a tablet | |
previous_cept = alignment_info.previous_cept(j) | |
src_class = None | |
if previous_cept is not None: | |
previous_s = alignment_info.src_sentence[previous_cept] | |
src_class = ibm_model.src_classes[previous_s] | |
trg_class = ibm_model.trg_classes[t] | |
dj = j - alignment_info.center_of_cept(previous_cept) | |
return ibm_model.head_distortion_table[dj][src_class][trg_class] | |
# case 3: t is a subsequent word of a tablet | |
previous_position = alignment_info.previous_in_tablet(j) | |
trg_class = ibm_model.trg_classes[t] | |
dj = j - previous_position | |
return ibm_model.non_head_distortion_table[dj][trg_class] | |
# end nested functions | |
# Abort computation whenever probability falls below MIN_PROB at | |
# any point, since MIN_PROB can be considered as zero | |
probability *= null_generation_term() | |
if probability < MIN_PROB: | |
return MIN_PROB | |
probability *= fertility_term() | |
if probability < MIN_PROB: | |
return MIN_PROB | |
for j in range(1, len(alignment_info.trg_sentence)): | |
probability *= lexical_translation_term(j) | |
if probability < MIN_PROB: | |
return MIN_PROB | |
probability *= distortion_term(j) | |
if probability < MIN_PROB: | |
return MIN_PROB | |
return probability | |
class Model4Counts(Counts): | |
""" | |
Data object to store counts of various parameters during training. | |
Includes counts for distortion. | |
""" | |
def __init__(self): | |
super().__init__() | |
self.head_distortion = defaultdict( | |
lambda: defaultdict(lambda: defaultdict(lambda: 0.0)) | |
) | |
self.head_distortion_for_any_dj = defaultdict(lambda: defaultdict(lambda: 0.0)) | |
self.non_head_distortion = defaultdict(lambda: defaultdict(lambda: 0.0)) | |
self.non_head_distortion_for_any_dj = defaultdict(lambda: 0.0) | |
def update_distortion(self, count, alignment_info, j, src_classes, trg_classes): | |
i = alignment_info.alignment[j] | |
t = alignment_info.trg_sentence[j] | |
if i == 0: | |
# case 1: t is aligned to NULL | |
pass | |
elif alignment_info.is_head_word(j): | |
# case 2: t is the first word of a tablet | |
previous_cept = alignment_info.previous_cept(j) | |
if previous_cept is not None: | |
previous_src_word = alignment_info.src_sentence[previous_cept] | |
src_class = src_classes[previous_src_word] | |
else: | |
src_class = None | |
trg_class = trg_classes[t] | |
dj = j - alignment_info.center_of_cept(previous_cept) | |
self.head_distortion[dj][src_class][trg_class] += count | |
self.head_distortion_for_any_dj[src_class][trg_class] += count | |
else: | |
# case 3: t is a subsequent word of a tablet | |
previous_j = alignment_info.previous_in_tablet(j) | |
trg_class = trg_classes[t] | |
dj = j - previous_j | |
self.non_head_distortion[dj][trg_class] += count | |
self.non_head_distortion_for_any_dj[trg_class] += count | |