sunnychenxiwang's picture
update nltk
d916065
raw
history blame
9.37 kB
# Natural Language Toolkit: Chunked Corpus Reader
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Steven Bird <[email protected]>
# Edward Loper <[email protected]>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
"""
A reader for corpora that contain chunked (and optionally tagged)
documents.
"""
import codecs
import os.path
import nltk
from nltk.chunk import tagstr2tree
from nltk.corpus.reader.api import *
from nltk.corpus.reader.bracket_parse import BracketParseCorpusReader
from nltk.corpus.reader.util import *
from nltk.tokenize import *
from nltk.tree import Tree
class ChunkedCorpusReader(CorpusReader):
"""
Reader for chunked (and optionally tagged) corpora. Paragraphs
are split using a block reader. They are then tokenized into
sentences using a sentence tokenizer. Finally, these sentences
are parsed into chunk trees using a string-to-chunktree conversion
function. Each of these steps can be performed using a default
function or a custom function. By default, paragraphs are split
on blank lines; sentences are listed one per line; and sentences
are parsed into chunk trees using ``nltk.chunk.tagstr2tree``.
"""
def __init__(
self,
root,
fileids,
extension="",
str2chunktree=tagstr2tree,
sent_tokenizer=RegexpTokenizer("\n", gaps=True),
para_block_reader=read_blankline_block,
encoding="utf8",
tagset=None,
):
"""
:param root: The root directory for this corpus.
:param fileids: A list or regexp specifying the fileids in this corpus.
"""
CorpusReader.__init__(self, root, fileids, encoding)
self._cv_args = (str2chunktree, sent_tokenizer, para_block_reader, tagset)
"""Arguments for corpus views generated by this corpus: a tuple
(str2chunktree, sent_tokenizer, para_block_tokenizer)"""
def words(self, fileids=None):
"""
:return: the given file(s) as a list of words
and punctuation symbols.
:rtype: list(str)
"""
return concat(
[
ChunkedCorpusView(f, enc, 0, 0, 0, 0, *self._cv_args)
for (f, enc) in self.abspaths(fileids, True)
]
)
def sents(self, fileids=None):
"""
:return: the given file(s) as a list of
sentences or utterances, each encoded as a list of word
strings.
:rtype: list(list(str))
"""
return concat(
[
ChunkedCorpusView(f, enc, 0, 1, 0, 0, *self._cv_args)
for (f, enc) in self.abspaths(fileids, True)
]
)
def paras(self, fileids=None):
"""
:return: the given file(s) as a list of
paragraphs, each encoded as a list of sentences, which are
in turn encoded as lists of word strings.
:rtype: list(list(list(str)))
"""
return concat(
[
ChunkedCorpusView(f, enc, 0, 1, 1, 0, *self._cv_args)
for (f, enc) in self.abspaths(fileids, True)
]
)
def tagged_words(self, fileids=None, tagset=None):
"""
:return: the given file(s) as a list of tagged
words and punctuation symbols, encoded as tuples
``(word,tag)``.
:rtype: list(tuple(str,str))
"""
return concat(
[
ChunkedCorpusView(
f, enc, 1, 0, 0, 0, *self._cv_args, target_tagset=tagset
)
for (f, enc) in self.abspaths(fileids, True)
]
)
def tagged_sents(self, fileids=None, tagset=None):
"""
:return: the given file(s) as a list of
sentences, each encoded as a list of ``(word,tag)`` tuples.
:rtype: list(list(tuple(str,str)))
"""
return concat(
[
ChunkedCorpusView(
f, enc, 1, 1, 0, 0, *self._cv_args, target_tagset=tagset
)
for (f, enc) in self.abspaths(fileids, True)
]
)
def tagged_paras(self, fileids=None, tagset=None):
"""
:return: the given file(s) as a list of
paragraphs, each encoded as a list of sentences, which are
in turn encoded as lists of ``(word,tag)`` tuples.
:rtype: list(list(list(tuple(str,str))))
"""
return concat(
[
ChunkedCorpusView(
f, enc, 1, 1, 1, 0, *self._cv_args, target_tagset=tagset
)
for (f, enc) in self.abspaths(fileids, True)
]
)
def chunked_words(self, fileids=None, tagset=None):
"""
:return: the given file(s) as a list of tagged
words and chunks. Words are encoded as ``(word, tag)``
tuples (if the corpus has tags) or word strings (if the
corpus has no tags). Chunks are encoded as depth-one
trees over ``(word,tag)`` tuples or word strings.
:rtype: list(tuple(str,str) and Tree)
"""
return concat(
[
ChunkedCorpusView(
f, enc, 1, 0, 0, 1, *self._cv_args, target_tagset=tagset
)
for (f, enc) in self.abspaths(fileids, True)
]
)
def chunked_sents(self, fileids=None, tagset=None):
"""
:return: the given file(s) as a list of
sentences, each encoded as a shallow Tree. The leaves
of these trees are encoded as ``(word, tag)`` tuples (if
the corpus has tags) or word strings (if the corpus has no
tags).
:rtype: list(Tree)
"""
return concat(
[
ChunkedCorpusView(
f, enc, 1, 1, 0, 1, *self._cv_args, target_tagset=tagset
)
for (f, enc) in self.abspaths(fileids, True)
]
)
def chunked_paras(self, fileids=None, tagset=None):
"""
:return: the given file(s) as a list of
paragraphs, each encoded as a list of sentences, which are
in turn encoded as a shallow Tree. The leaves of these
trees are encoded as ``(word, tag)`` tuples (if the corpus
has tags) or word strings (if the corpus has no tags).
:rtype: list(list(Tree))
"""
return concat(
[
ChunkedCorpusView(
f, enc, 1, 1, 1, 1, *self._cv_args, target_tagset=tagset
)
for (f, enc) in self.abspaths(fileids, True)
]
)
def _read_block(self, stream):
return [tagstr2tree(t) for t in read_blankline_block(stream)]
class ChunkedCorpusView(StreamBackedCorpusView):
def __init__(
self,
fileid,
encoding,
tagged,
group_by_sent,
group_by_para,
chunked,
str2chunktree,
sent_tokenizer,
para_block_reader,
source_tagset=None,
target_tagset=None,
):
StreamBackedCorpusView.__init__(self, fileid, encoding=encoding)
self._tagged = tagged
self._group_by_sent = group_by_sent
self._group_by_para = group_by_para
self._chunked = chunked
self._str2chunktree = str2chunktree
self._sent_tokenizer = sent_tokenizer
self._para_block_reader = para_block_reader
self._source_tagset = source_tagset
self._target_tagset = target_tagset
def read_block(self, stream):
block = []
for para_str in self._para_block_reader(stream):
para = []
for sent_str in self._sent_tokenizer.tokenize(para_str):
sent = self._str2chunktree(
sent_str,
source_tagset=self._source_tagset,
target_tagset=self._target_tagset,
)
# If requested, throw away the tags.
if not self._tagged:
sent = self._untag(sent)
# If requested, throw away the chunks.
if not self._chunked:
sent = sent.leaves()
# Add the sentence to `para`.
if self._group_by_sent:
para.append(sent)
else:
para.extend(sent)
# Add the paragraph to `block`.
if self._group_by_para:
block.append(para)
else:
block.extend(para)
# Return the block
return block
def _untag(self, tree):
for i, child in enumerate(tree):
if isinstance(child, Tree):
self._untag(child)
elif isinstance(child, tuple):
tree[i] = child[0]
else:
raise ValueError("expected child to be Tree or tuple")
return tree