Spaces:
Sleeping
Sleeping
import copy | |
from typing import Dict, List, Optional, Sequence, Union | |
import torch | |
import torch.nn.functional as F | |
from torch import Tensor, nn | |
from mmocr.models.common import Dictionary | |
from mmocr.models.textrecog.decoders import BaseDecoder | |
from mmocr.registry import MODELS | |
from mmocr.utils.typing_utils import TextSpottingDataSample | |
from .position_embedding import PositionEmbeddingSine | |
class SPTSDecoder(BaseDecoder): | |
"""SPTS Decoder. | |
Args: | |
dictionary (dict or :obj:`Dictionary`): The config for `Dictionary` or | |
the instance of `Dictionary`. | |
num_bins (int): Number of bins dividing the image. Defaults to 1000. | |
n_head (int): Number of parallel attention heads. Defaults to 8. | |
d_model (int): Dimension :math:`D_m` of the input from previous model. | |
Defaults to 256. | |
d_feedforward (int): Dimension of the feedforward layer. | |
Defaults to 1024. | |
normalize_before (bool): Whether to normalize the input before | |
encoding/decoding. Defaults to True. | |
max_num_text (int): Maximum number of text instances in a sample. | |
Defaults to 60. | |
module_loss (dict, optional): Config to build loss. Defaults to None. | |
postprocessor (dict, optional): Config to build postprocessor. | |
Defaults to None. | |
init_cfg (dict or list[dict], optional): Initialization configs. | |
Defaults to None. | |
""" | |
def __init__(self, | |
dictionary: Union[Dict, Dictionary], | |
num_bins: int = 1000, | |
n_head: int = 8, | |
d_model: int = 256, | |
d_feedforward: int = 1024, | |
normalize_before: bool = True, | |
dropout: float = 0.1, | |
max_num_text: int = 60, | |
module_loss: Optional[Dict] = None, | |
postprocessor: Optional[Dict] = None, | |
init_cfg: Optional[Union[Dict, List[Dict]]] = None) -> None: | |
# TODO: fix hardcode | |
self.max_seq_len = (2 + 25) * max_num_text + 1 | |
super().__init__( | |
dictionary=dictionary, | |
module_loss=module_loss, | |
postprocessor=postprocessor, | |
max_seq_len=self.max_seq_len, | |
init_cfg=init_cfg) | |
self.num_bins = num_bins | |
self.embedding = DecoderEmbeddings(self.dictionary.num_classes, | |
self.dictionary.padding_idx, | |
d_model, self.max_seq_len, dropout) | |
self.pos_embedding = PositionEmbeddingSine(d_model // 2) | |
self.vocab_embed = self._gen_vocab_embed(d_model, d_model, | |
self.dictionary.num_classes, | |
3) | |
encoder_layer = TransformerEncoderLayer(d_model, n_head, d_feedforward, | |
dropout, 'relu', | |
normalize_before) | |
encoder_norm = nn.LayerNorm(d_model) if normalize_before else None | |
num_encoder_layers = 6 | |
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, | |
encoder_norm) | |
decoder_layer = TransformerDecoderLayer(d_model, n_head, d_feedforward, | |
dropout, 'relu', | |
normalize_before) | |
decoder_norm = nn.LayerNorm(d_model) | |
num_decoder_layers = 6 | |
self.decoder = TransformerDecoder( | |
decoder_layer, | |
num_decoder_layers, | |
decoder_norm, | |
return_intermediate=False) | |
self._reset_parameters() | |
def _reset_parameters(self): | |
for p in self.parameters(): | |
if p.dim() > 1: | |
nn.init.xavier_uniform_(p) | |
def _gen_vocab_embed(self, input_dim: int, hidden_dim: int, | |
output_dim: int, num_layers: int) -> nn.Module: | |
"""Generate vocab embedding layer.""" | |
net = nn.Sequential() | |
h = [hidden_dim] * (num_layers - 1) | |
for i, (n, k) in enumerate(zip([input_dim] + h, h + [output_dim])): | |
net.add_module(f'layer-{i}', nn.Linear(n, k)) | |
if i < num_layers - 1: | |
net.add_module(f'relu-{i}', nn.ReLU()) | |
return net | |
def forward_train( | |
self, | |
feat: Optional[torch.Tensor] = None, | |
out_enc: Optional[torch.Tensor] = None, | |
data_samples: Optional[Sequence[TextSpottingDataSample]] = None | |
) -> torch.Tensor: | |
"""Forward for training. | |
Args: | |
feat (torch.Tensor, optional): The feature map from backbone of | |
shape :math:`(N, E, H, W)`. Defaults to None. | |
out_enc (torch.Tensor, optional): Encoder output. Defaults to None. | |
data_samples (Sequence[TextRecogDataSample]): Batch of | |
TextRecogDataSample, containing gt_text information. Defaults | |
to None. | |
""" | |
mask, pos_embed, memory, query_embed = self._embed( | |
out_enc, data_samples) | |
padded_targets = [ | |
data_sample.gt_instances.padded_indexes | |
for data_sample in data_samples | |
] | |
padded_targets = torch.stack(padded_targets, dim=0).to(out_enc.device) | |
# we don't need eos here | |
tgt = self.embedding(padded_targets[:, :-1]).permute(1, 0, 2) | |
hs = self.decoder( | |
tgt, | |
memory, | |
memory_key_padding_mask=mask, | |
pos=pos_embed, | |
query_pos=query_embed[:len(tgt)], | |
tgt_mask=self._generate_square_subsequent_mask(len(tgt)).to( | |
tgt.device)) | |
return self.vocab_embed(hs[-1].transpose(0, 1)) | |
def forward_test( | |
self, | |
feat: Optional[torch.Tensor] = None, | |
out_enc: Optional[torch.Tensor] = None, | |
data_samples: Optional[Sequence[TextSpottingDataSample]] = None | |
) -> torch.Tensor: | |
"""Forward for testing. | |
Args: | |
feat (torch.Tensor, optional): The feature map from backbone of | |
shape :math:`(N, E, H, W)`. Defaults to None. | |
out_enc (torch.Tensor, optional): Encoder output. Defaults to None. | |
data_samples (Sequence[TextRecogDataSample]): Batch of | |
TextRecogDataSample, containing gt_text information. Defaults | |
to None. | |
""" | |
batch_size = out_enc.shape[0] | |
mask, pos_embed, memory, query_embed = self._embed( | |
out_enc, data_samples) | |
max_probs = [] | |
seq = torch.zeros( | |
batch_size, 1, dtype=torch.long).to( | |
out_enc.device) + self.dictionary.start_idx | |
for i in range(self.max_seq_len): | |
tgt = self.embedding(seq).permute(1, 0, 2) | |
hs = self.decoder( | |
tgt, | |
memory, | |
memory_key_padding_mask=mask, | |
pos=pos_embed, | |
query_pos=query_embed[:len(tgt)], | |
tgt_mask=self._generate_square_subsequent_mask(len(tgt)).to( | |
tgt.device)) # bs, 1, E ? | |
out = self.vocab_embed(hs.transpose(1, 2)[-1, :, -1, :]) | |
out = out.softmax(-1) | |
# bins chars unk eos seq_eos sos padding | |
if i % 27 == 0: # coordinate or eos | |
out[:, self.num_bins:self.dictionary.seq_end_idx] = 0 | |
out[:, self.dictionary.seq_end_idx + 1:] = 0 | |
elif i % 27 == 1: # coordinate | |
out[:, self.num_bins:] = 0 | |
else: # chars | |
out[:, :self.num_bins] = 0 | |
out[:, self.dictionary.seq_end_idx:] = 0 | |
max_prob, extra_seq = torch.max(out, dim=-1, keepdim=True) | |
# prob, extra_seq = out.topk(dim=-1, k=1) | |
# work for single batch only (original implementation) | |
# TODO: optimize for multi-batch | |
seq = torch.cat([seq, extra_seq], dim=-1) | |
max_probs.append(max_prob) | |
if extra_seq[0] == self.dictionary.seq_end_idx: | |
break | |
max_probs = torch.cat(max_probs, dim=-1) | |
max_probs = max_probs[:, :-1] # remove seq_eos | |
seq = seq[:, 1:-1] # remove start index and seq_eos | |
return max_probs, seq | |
def _embed(self, out_enc, data_samples): | |
bs, c, h, w = out_enc.shape | |
mask, pos_embed = self._gen_mask(out_enc, data_samples) | |
out_enc = out_enc.flatten(2).permute(2, 0, 1) | |
pos_embed = pos_embed.flatten(2).permute(2, 0, 1) | |
mask = mask.flatten(1) | |
# TODO move encoder to mmcv | |
memory = self.encoder( | |
out_enc, src_key_padding_mask=mask, pos=pos_embed.half()) | |
query_embed = self.embedding.position_embeddings.weight.unsqueeze(1) | |
query_embed = query_embed.repeat(1, bs, 1) | |
return mask, pos_embed, memory, query_embed | |
def _generate_square_subsequent_mask(self, size): | |
r"""Generate a square mask for the sequence. The masked positions are | |
filled with float('-inf'). Unmasked positions are filled with | |
float(0.0). | |
""" | |
mask = (torch.triu(torch.ones(size, size)) == 1).transpose(0, 1) | |
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill( | |
mask == 1, float(0.0)) | |
return mask | |
def _gen_mask(self, out_enc, data_samples): | |
bs, _, h, w = out_enc.shape | |
masks = torch.ones((bs, h, w), dtype=bool, device=out_enc.device) | |
for i, data_sample in enumerate(data_samples): | |
img_h, img_w = data_sample.img_shape | |
masks[i, :img_h, :img_w] = False | |
masks = F.interpolate( | |
masks[None].float(), size=(h, w)).to(torch.bool)[0] | |
return masks, self.pos_embedding(masks) | |
class DecoderEmbeddings(nn.Module): | |
def __init__(self, num_classes: int, padding_idx: int, hidden_dim, | |
max_position_embeddings, dropout): | |
super(DecoderEmbeddings, self).__init__() | |
self.word_embeddings = nn.Embedding( | |
num_classes, hidden_dim, padding_idx=padding_idx) | |
self.position_embeddings = nn.Embedding(max_position_embeddings, | |
hidden_dim) | |
self.LayerNorm = torch.nn.LayerNorm(hidden_dim) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x): | |
input_shape = x.size() | |
seq_length = input_shape[1] | |
device = x.device | |
position_ids = torch.arange( | |
seq_length, dtype=torch.long, device=device) | |
position_ids = position_ids.unsqueeze(0).expand(input_shape) | |
input_embeds = self.word_embeddings(x) | |
position_embeds = self.position_embeddings(position_ids) | |
embeddings = input_embeds + position_embeds | |
embeddings = self.LayerNorm(embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
class TransformerEncoder(nn.Module): | |
def __init__(self, encoder_layer, num_layers, norm=None): | |
super(TransformerEncoder, self).__init__() | |
self.layers = _get_clones(encoder_layer, num_layers) | |
self.num_layers = num_layers | |
self.norm = norm | |
def forward(self, | |
src, | |
mask: Optional[Tensor] = None, | |
src_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None): | |
output = src | |
for layer in self.layers: | |
output = layer( | |
output, | |
src_mask=mask, | |
src_key_padding_mask=src_key_padding_mask, | |
pos=pos) | |
if self.norm is not None: | |
output = self.norm(output) | |
return output | |
class TransformerDecoder(nn.Module): | |
def __init__(self, | |
decoder_layer, | |
num_layers, | |
norm=None, | |
return_intermediate=False): | |
super(TransformerDecoder, self).__init__() | |
self.layers = _get_clones(decoder_layer, num_layers) | |
self.num_layers = num_layers | |
self.norm = norm | |
self.return_intermediate = return_intermediate | |
def forward(self, | |
tgt, | |
memory, | |
tgt_mask: Optional[Tensor] = None, | |
memory_mask: Optional[Tensor] = None, | |
tgt_key_padding_mask: Optional[Tensor] = None, | |
memory_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None, | |
query_pos: Optional[Tensor] = None): | |
output = tgt | |
for layer in self.layers: | |
output = layer( | |
output, | |
memory, | |
tgt_mask=tgt_mask, | |
memory_mask=memory_mask, | |
tgt_key_padding_mask=tgt_key_padding_mask, | |
memory_key_padding_mask=memory_key_padding_mask, | |
pos=pos, | |
query_pos=query_pos) | |
if self.norm is not None: | |
# nn.LayerNorm(d_model) | |
output = self.norm(output) | |
return output.unsqueeze(0) | |
class TransformerEncoderLayer(nn.Module): | |
def __init__(self, | |
d_model, | |
nhead, | |
dim_feedforward=2048, | |
dropout=0.1, | |
activation='relu', | |
normalize_before=False): | |
super(TransformerEncoderLayer, self).__init__() | |
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) | |
# Implementation of Feedforward model | |
self.linear1 = nn.Linear(d_model, dim_feedforward) | |
self.dropout = nn.Dropout(dropout) | |
self.linear2 = nn.Linear(dim_feedforward, d_model) | |
self.norm1 = nn.LayerNorm(d_model) | |
self.norm2 = nn.LayerNorm(d_model) | |
self.dropout1 = nn.Dropout(dropout) | |
self.dropout2 = nn.Dropout(dropout) | |
self.activation = _get_activation_fn(activation) | |
self.normalize_before = normalize_before | |
def with_pos_embed(self, tensor, pos: Optional[Tensor]): | |
return tensor if pos is None else tensor + pos | |
def forward_post(self, | |
src, | |
src_mask: Optional[Tensor] = None, | |
src_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None): | |
q = k = self.with_pos_embed(src, pos) | |
src2 = self.self_attn( | |
q, | |
k, | |
value=src, | |
attn_mask=src_mask, | |
key_padding_mask=src_key_padding_mask)[0] | |
src = src + self.dropout1(src2) | |
src = self.norm1(src) | |
src2 = self.linear2(self.dropout(self.activation(self.linear1(src)))) | |
src = src + self.dropout2(src2) | |
src = self.norm2(src) | |
return src | |
def forward_pre(self, | |
src, | |
src_mask: Optional[Tensor] = None, | |
src_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None): | |
src2 = self.norm1(src) | |
q = k = self.with_pos_embed(src2, pos) | |
src2 = self.self_attn( | |
q, | |
k, | |
value=src2, | |
attn_mask=src_mask, | |
key_padding_mask=src_key_padding_mask)[0] | |
src = src + self.dropout1(src2) | |
src2 = self.norm2(src) | |
src2 = self.linear2(self.dropout(self.activation(self.linear1(src2)))) | |
src = src + self.dropout2(src2) | |
return src | |
def forward(self, | |
src, | |
src_mask: Optional[Tensor] = None, | |
src_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None): | |
if self.normalize_before: | |
return self.forward_pre(src, src_mask, src_key_padding_mask, pos) | |
return self.forward_post(src, src_mask, src_key_padding_mask, pos) | |
class TransformerDecoderLayer(nn.Module): | |
def __init__(self, | |
d_model, | |
nhead, | |
dim_feedforward=2048, | |
dropout=0.1, | |
activation='relu', | |
normalize_before=False): | |
super(TransformerDecoderLayer, self).__init__() | |
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout) | |
self.multihead_attn = nn.MultiheadAttention( | |
d_model, nhead, dropout=dropout) | |
# Implementation of Feedforward model | |
self.linear1 = nn.Linear(d_model, dim_feedforward) | |
self.dropout = nn.Dropout(dropout) | |
self.linear2 = nn.Linear(dim_feedforward, d_model) | |
self.norm1 = nn.LayerNorm(d_model) | |
self.norm2 = nn.LayerNorm(d_model) | |
self.norm3 = nn.LayerNorm(d_model) | |
self.dropout1 = nn.Dropout(dropout) | |
self.dropout2 = nn.Dropout(dropout) | |
self.dropout3 = nn.Dropout(dropout) | |
self.activation = _get_activation_fn(activation) | |
self.normalize_before = normalize_before | |
def with_pos_embed(self, tensor, pos: Optional[Tensor]): | |
return tensor if pos is None else tensor + pos | |
def forward_post(self, | |
tgt, | |
memory, | |
tgt_mask: Optional[Tensor] = None, | |
memory_mask: Optional[Tensor] = None, | |
tgt_key_padding_mask: Optional[Tensor] = None, | |
memory_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None, | |
query_pos: Optional[Tensor] = None): | |
q = k = self.with_pos_embed(tgt, query_pos) | |
tgt2 = self.self_attn( | |
q, | |
k, | |
value=tgt, | |
attn_mask=tgt_mask, | |
key_padding_mask=tgt_key_padding_mask)[0] | |
tgt = tgt + self.dropout1(tgt2) | |
tgt = self.norm1(tgt) | |
tgt2 = self.multihead_attn( | |
query=self.with_pos_embed(tgt, query_pos), | |
key=self.with_pos_embed(memory, pos), | |
value=memory, | |
attn_mask=memory_mask, | |
key_padding_mask=memory_key_padding_mask)[0] | |
tgt = tgt + self.dropout2(tgt2) | |
tgt = self.norm2(tgt) | |
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt)))) | |
tgt = tgt + self.dropout3(tgt2) | |
tgt = self.norm3(tgt) | |
return tgt | |
def forward_pre(self, | |
tgt, | |
memory, | |
tgt_mask: Optional[Tensor] = None, | |
memory_mask: Optional[Tensor] = None, | |
tgt_key_padding_mask: Optional[Tensor] = None, | |
memory_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None, | |
query_pos: Optional[Tensor] = None): | |
tgt2 = self.norm1(tgt) | |
q = k = self.with_pos_embed(tgt2, query_pos) | |
tgt2 = self.self_attn( | |
q, | |
k, | |
value=tgt2, | |
attn_mask=tgt_mask, | |
key_padding_mask=tgt_key_padding_mask)[0] | |
tgt = tgt + self.dropout1(tgt2) | |
tgt2 = self.norm2(tgt) | |
tgt2 = self.multihead_attn( | |
query=self.with_pos_embed(tgt2, query_pos), | |
key=self.with_pos_embed(memory, pos), | |
value=memory, | |
attn_mask=memory_mask, | |
key_padding_mask=memory_key_padding_mask)[0] | |
tgt = tgt + self.dropout2(tgt2) | |
tgt2 = self.norm3(tgt) | |
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) | |
tgt = tgt + self.dropout3(tgt2) | |
return tgt | |
def forward(self, | |
tgt, | |
memory, | |
tgt_mask: Optional[Tensor] = None, | |
memory_mask: Optional[Tensor] = None, | |
tgt_key_padding_mask: Optional[Tensor] = None, | |
memory_key_padding_mask: Optional[Tensor] = None, | |
pos: Optional[Tensor] = None, | |
query_pos: Optional[Tensor] = None): | |
if self.normalize_before: | |
return self.forward_pre(tgt, memory, tgt_mask, memory_mask, | |
tgt_key_padding_mask, | |
memory_key_padding_mask, pos, query_pos) | |
return self.forward_post(tgt, memory, tgt_mask, memory_mask, | |
tgt_key_padding_mask, memory_key_padding_mask, | |
pos, query_pos) | |
def _get_clones(module, N): | |
return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) | |
def _get_activation_fn(activation): | |
"""Return an activation function given a string.""" | |
if activation == 'relu': | |
return F.relu | |
if activation == 'gelu': | |
return F.gelu | |
if activation == 'glu': | |
return F.glu | |
raise RuntimeError(F'activation should be relu/gelu, not {activation}.') | |