sunnychenxiwang's picture
Upload 1595 files
0b4516f verified
raw
history blame
7.7 kB
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import json
import math
import os.path as osp
from functools import partial
import mmcv
import mmengine
import numpy as np
from shapely.geometry import Polygon
from mmocr.utils import dump_ocr_data
def seg2bbox(seg):
"""Convert segmentation to bbox.
Args:
seg (list(int | float)): A set of coordinates
"""
if len(seg) == 4:
min_x = min(seg[0], seg[2], seg[4], seg[6])
max_x = max(seg[0], seg[2], seg[4], seg[6])
min_y = min(seg[1], seg[3], seg[5], seg[7])
max_y = max(seg[1], seg[3], seg[5], seg[7])
else:
seg = np.array(seg).reshape(-1, 2)
polygon = Polygon(seg)
min_x, min_y, max_x, max_y = polygon.bounds
bbox = [min_x, min_y, max_x - min_x, max_y - min_y]
return bbox
def process_level(
src_img,
annotation,
dst_image_root,
ignore_image_root,
preserve_vertical,
split,
para_idx,
img_idx,
line_idx,
word_idx=None,
):
vertices = annotation['vertices']
text_label = annotation['text']
segmentation = [i for j in vertices for i in j]
x, y, w, h = seg2bbox(segmentation)
x, y = max(0, math.floor(x)), max(0, math.floor(y))
w, h = math.ceil(w), math.ceil(h)
dst_img = src_img[y:y + h, x:x + w]
if word_idx:
dst_img_name = f'img_{img_idx}_{para_idx}_{line_idx}_{word_idx}.jpg'
else:
dst_img_name = f'img_{img_idx}_{para_idx}_{line_idx}.jpg'
if not preserve_vertical and h / w > 2 and split == 'train':
dst_img_path = osp.join(ignore_image_root, dst_img_name)
mmcv.imwrite(dst_img, dst_img_path)
return None
dst_img_path = osp.join(dst_image_root, dst_img_name)
mmcv.imwrite(dst_img, dst_img_path)
label = {'file_name': dst_img_name, 'anno_info': [{'text': text_label}]}
return label
def process_img(args, src_image_root, dst_image_root, ignore_image_root, level,
preserve_vertical, split):
# Dirty hack for multi-processing
img_idx, img_annos = args
src_img = mmcv.imread(
osp.join(src_image_root, img_annos['image_id'] + '.jpg'))
labels = []
for para_idx, paragraph in enumerate(img_annos['paragraphs']):
for line_idx, line in enumerate(paragraph['lines']):
if level == 'line':
# Ignore illegible words
if line['legible']:
label = process_level(src_img, line, dst_image_root,
ignore_image_root, preserve_vertical,
split, para_idx, img_idx, line_idx)
if label is not None:
labels.append(label)
elif level == 'word':
for word_idx, word in enumerate(line['words']):
if not word['legible']:
continue
label = process_level(src_img, word, dst_image_root,
ignore_image_root, preserve_vertical,
split, para_idx, img_idx, line_idx,
word_idx)
if label is not None:
labels.append(label)
return labels
def convert_hiertext(
root_path,
split,
level,
preserve_vertical,
nproc,
):
"""Collect the annotation information and crop the images.
The annotation format is as the following:
{
"info": {
"date": "release date",
"version": "current version"
},
"annotations": [ // List of dictionaries, one for each image.
{
"image_id": "the filename of corresponding image.",
"image_width": image_width, // (int) The image width.
"image_height": image_height, // (int) The image height.
"paragraphs": [ // List of paragraphs.
{
"vertices": [[x1, y1], [x2, y2],...,[xn, yn]]
"legible": true
"lines": [
{
"vertices": [[x1, y1], [x2, y2],...,[x4, y4]]
"text": L
"legible": true,
"handwritten": false
"vertical": false,
"words": [
{
"vertices": [[x1, y1], [x2, y2],...,[xm, ym]]
"text": "the text content of this word",
"legible": true
"handwritten": false,
"vertical": false,
}, ...
]
}, ...
]
}, ...
]
}, ...
]
}
Args:
root_path (str): Root path to the dataset
split (str): Dataset split, which should be 'train' or 'val'
level (str): Crop word or line level instances
preserve_vertical (bool): Whether to preserve vertical texts
nproc (int): Number of processes
Returns:
img_info (dict): The dict of the img and annotation information
"""
annotation_path = osp.join(root_path, 'annotations/' + split + '.jsonl')
if not osp.exists(annotation_path):
raise Exception(
f'{annotation_path} not exists, please check and try again.')
annotation = json.load(open(annotation_path))['annotations']
# outputs
dst_label_file = osp.join(root_path, f'{split}_label.json')
dst_image_root = osp.join(root_path, 'crops', split)
ignore_image_root = osp.join(root_path, 'ignores', split)
src_image_root = osp.join(root_path, 'imgs', split)
mmengine.mkdir_or_exist(dst_image_root)
mmengine.mkdir_or_exist(ignore_image_root)
process_img_with_path = partial(
process_img,
src_image_root=src_image_root,
dst_image_root=dst_image_root,
ignore_image_root=ignore_image_root,
level=level,
preserve_vertical=preserve_vertical,
split=split)
tasks = []
for img_idx, img_info in enumerate(annotation):
tasks.append((img_idx, img_info))
labels_list = mmengine.track_parallel_progress(
process_img_with_path, tasks, keep_order=True, nproc=nproc)
final_labels = []
for label_list in labels_list:
final_labels += label_list
dump_ocr_data(final_labels, dst_label_file, 'textrecog')
def parse_args():
parser = argparse.ArgumentParser(
description='Generate training and validation set of HierText')
parser.add_argument('root_path', help='Root dir path of HierText')
parser.add_argument(
'--nproc', default=1, type=int, help='Number of processes')
parser.add_argument(
'--preserve-vertical',
help='Preserve samples containing vertical texts',
action='store_true')
parser.add_argument(
'--level',
default='word',
help='Crop word or line level instance',
choices=['word', 'line'])
args = parser.parse_args()
return args
def main():
args = parse_args()
root_path = args.root_path
print('Processing training set...')
convert_hiertext(
root_path=root_path,
split='train',
level=args.level,
preserve_vertical=args.preserve_vertical,
nproc=args.nproc)
print('Processing validation set...')
convert_hiertext(
root_path=root_path,
split='val',
level=args.level,
preserve_vertical=args.preserve_vertical,
nproc=args.nproc)
print('Finish')
if __name__ == '__main__':
main()