Spaces:
Sleeping
Sleeping
# Copyright (c) OpenMMLab. All rights reserved. | |
from abc import ABCMeta, abstractmethod | |
from typing import Union | |
import torch | |
from mmengine.model.base_model import BaseModel | |
from mmocr.utils import (OptConfigType, OptMultiConfig, OptRecSampleList, | |
RecForwardResults, RecSampleList) | |
class BaseTextSpotter(BaseModel, metaclass=ABCMeta): | |
"""Base class for text spotter. | |
TODO: Refine docstr & typehint | |
Args: | |
data_preprocessor (dict or ConfigDict, optional): The pre-process | |
config of :class:`BaseDataPreprocessor`. it usually includes, | |
``pad_size_divisor``, ``pad_value``, ``mean`` and ``std``. | |
init_cfg (dict or ConfigDict or List[dict], optional): the config | |
to control the initialization. Defaults to None. | |
""" | |
def __init__(self, | |
data_preprocessor: OptConfigType = None, | |
init_cfg: OptMultiConfig = None): | |
super().__init__( | |
data_preprocessor=data_preprocessor, init_cfg=init_cfg) | |
def with_backbone(self): | |
"""bool: whether the recognizer has a backbone""" | |
return hasattr(self, 'backbone') | |
def with_encoder(self): | |
"""bool: whether the recognizer has an encoder""" | |
return hasattr(self, 'encoder') | |
def with_preprocessor(self): | |
"""bool: whether the recognizer has a preprocessor""" | |
return hasattr(self, 'preprocessor') | |
def with_decoder(self): | |
"""bool: whether the recognizer has a decoder""" | |
return hasattr(self, 'decoder') | |
def extract_feat(self, inputs: torch.Tensor) -> torch.Tensor: | |
"""Extract features from images.""" | |
pass | |
def forward(self, | |
inputs: torch.Tensor, | |
data_samples: OptRecSampleList = None, | |
mode: str = 'tensor', | |
**kwargs) -> RecForwardResults: | |
"""The unified entry for a forward process in both training and test. | |
The method should accept three modes: "tensor", "predict" and "loss": | |
- "tensor": Forward the whole network and return tensor or tuple of | |
tensor without any post-processing, same as a common nn.Module. | |
- "predict": Forward and return the predictions, which are fully | |
processed to a list of :obj:`DetDataSample`. | |
- "loss": Forward and return a dict of losses according to the given | |
inputs and data samples. | |
Note that this method doesn't handle neither back propagation nor | |
optimizer updating, which are done in the :meth:`train_step`. | |
Args: | |
inputs (torch.Tensor): The input tensor with shape | |
(N, C, ...) in general. | |
data_samples (list[:obj:`DetDataSample`], optional): The | |
annotation data of every samples. Defaults to None. | |
mode (str): Return what kind of value. Defaults to 'tensor'. | |
Returns: | |
The return type depends on ``mode``. | |
- If ``mode="tensor"``, return a tensor or a tuple of tensor. | |
- If ``mode="predict"``, return a list of :obj:`DetDataSample`. | |
- If ``mode="loss"``, return a dict of tensor. | |
""" | |
if mode == 'loss': | |
return self.loss(inputs, data_samples, **kwargs) | |
elif mode == 'predict': | |
return self.predict(inputs, data_samples, **kwargs) | |
elif mode == 'tensor': | |
return self._forward(inputs, data_samples, **kwargs) | |
else: | |
raise RuntimeError(f'Invalid mode "{mode}". ' | |
'Only supports loss, predict and tensor mode') | |
def loss(self, inputs: torch.Tensor, data_samples: RecSampleList, | |
**kwargs) -> Union[dict, tuple]: | |
"""Calculate losses from a batch of inputs and data samples.""" | |
pass | |
def predict(self, inputs: torch.Tensor, data_samples: RecSampleList, | |
**kwargs) -> RecSampleList: | |
"""Predict results from a batch of inputs and data samples with post- | |
processing.""" | |
pass | |
def _forward(self, | |
inputs: torch.Tensor, | |
data_samples: OptRecSampleList = None, | |
**kwargs): | |
"""Network forward process. | |
Usually includes backbone, neck and head forward without any post- | |
processing. | |
""" | |
pass | |