Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
# Copyright (c) OpenMMLab. All rights reserved. | |
import functools as func | |
import re | |
from os.path import basename, splitext | |
import numpy as np | |
import titlecase | |
from weight_list import gen_weight_list | |
def title2anchor(name): | |
return re.sub(r'-+', '-', re.sub(r'[^a-zA-Z0-9]', '-', | |
name.strip().lower())).strip('-') | |
# Count algorithms | |
files = [ | |
'backbones.md', 'textdet_models.md', 'textrecog_models.md', 'kie_models.md' | |
] | |
stats = [] | |
for f in files: | |
with open(f) as content_file: | |
content = content_file.read() | |
# Remove the blackquote notation from the paper link under the title | |
# for better layout in readthedocs | |
expr = r'(^## \s*?.*?\s+?)>\s*?(\[.*?\]\(.*?\))' | |
content = re.sub(expr, r'\1\2', content, flags=re.MULTILINE) | |
with open(f, 'w') as content_file: | |
content_file.write(content) | |
# title | |
title = content.split('\n')[0].replace('#', '') | |
# count papers | |
exclude_papertype = ['ABSTRACT', 'IMAGE'] | |
exclude_expr = ''.join(f'(?!{s})' for s in exclude_papertype) | |
expr = rf'<!-- \[{exclude_expr}([A-Z]+?)\] -->'\ | |
r'\s*\n.*?\btitle\s*=\s*{(.*?)}' | |
papers = {(papertype, titlecase.titlecase(paper.lower().strip())) | |
for (papertype, paper) in re.findall(expr, content, re.DOTALL)} | |
print(papers) | |
# paper links | |
revcontent = '\n'.join(list(reversed(content.splitlines()))) | |
paperlinks = {} | |
for _, p in papers: | |
q = p.replace('\\', '\\\\').replace('?', '\\?') | |
paper_link = title2anchor( | |
re.search( | |
rf'\btitle\s*=\s*{{\s*{q}\s*}}.*?\n## (.*?)\s*[,;]?\s*\n', | |
revcontent, re.DOTALL | re.IGNORECASE).group(1)) | |
paperlinks[p] = f'[{p}]({splitext(basename(f))[0]}.md#{paper_link})' | |
paperlist = '\n'.join( | |
sorted(f' - [{t}] {paperlinks[x]}' for t, x in papers)) | |
# count configs | |
configs = { | |
x.lower().strip() | |
for x in re.findall(r'https.*configs/.*\.py', content) | |
} | |
# count ckpts | |
ckpts = { | |
x.lower().strip() | |
for x in re.findall(r'https://download.*\.pth', content) | |
if 'mmocr' in x | |
} | |
statsmsg = f""" | |
## [{title}]({f}) | |
* 模型权重文件数量: {len(ckpts)} | |
* 配置文件数量: {len(configs)} | |
* 论文数量: {len(papers)} | |
{paperlist} | |
""" | |
stats.append((papers, configs, ckpts, statsmsg)) | |
allpapers = func.reduce(lambda a, b: a.union(b), [p for p, _, _, _ in stats]) | |
allconfigs = func.reduce(lambda a, b: a.union(b), [c for _, c, _, _ in stats]) | |
allckpts = func.reduce(lambda a, b: a.union(b), [c for _, _, c, _ in stats]) | |
msglist = '\n'.join(x for _, _, _, x in stats) | |
papertypes, papercounts = np.unique([t for t, _ in allpapers], | |
return_counts=True) | |
countstr = '\n'.join( | |
[f' - {t}: {c}' for t, c in zip(papertypes, papercounts)]) | |
# get model list | |
weight_list = gen_weight_list() | |
modelzoo = f""" | |
# 总览 | |
## 权重 | |
以下是可用于[推理](user_guides/inference.md)的权重列表。 | |
为了便于使用,有的权重可能会存在多个较短的别名,这在表格中将用“/”分隔。 | |
例如,表格中展示的 `DB_r18 / dbnet_resnet18_fpnc_1200e_icdar2015` 表示您可以使用 | |
`DB_r18` 或 `dbnet_resnet18_fpnc_1200e_icdar2015` 来初始化推理器: | |
```python | |
from mmocr.apis import TextDetInferencer | |
inferencer = TextDetInferencer(model='DB_r18') | |
# 等价于 | |
inferencer = TextDetInferencer(model='dbnet_resnet18_fpnc_1200e_icdar2015') | |
``` | |
{weight_list} | |
## 统计数据 | |
* 模型权重文件数量: {len(allckpts)} | |
* 配置文件数量: {len(allconfigs)} | |
* 论文数量: {len(allpapers)} | |
{countstr} | |
{msglist} | |
""" # noqa | |
with open('modelzoo.md', 'w') as f: | |
f.write(modelzoo) | |