Spaces:
Sleeping
Sleeping
import typer | |
from groundingdino.util.inference import load_model, load_image, predict | |
from tqdm import tqdm | |
import torchvision | |
import torch | |
import fiftyone as fo | |
def main( | |
image_directory: str = 'test_grounding_dino', | |
text_prompt: str = 'bus, car', | |
box_threshold: float = 0.15, | |
text_threshold: float = 0.10, | |
export_dataset: bool = False, | |
view_dataset: bool = False, | |
export_annotated_images: bool = True, | |
weights_path : str = "groundingdino_swint_ogc.pth", | |
config_path: str = "../../GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py", | |
subsample: int = None, | |
): | |
model = load_model(config_path, weights_path) | |
dataset = fo.Dataset.from_images_dir(image_directory) | |
samples = [] | |
if subsample is not None: | |
if subsample < len(dataset): | |
dataset = dataset.take(subsample).clone() | |
for sample in tqdm(dataset): | |
image_source, image = load_image(sample.filepath) | |
boxes, logits, phrases = predict( | |
model=model, | |
image=image, | |
caption=text_prompt, | |
box_threshold=box_threshold, | |
text_threshold=text_threshold, | |
) | |
detections = [] | |
for box, logit, phrase in zip(boxes, logits, phrases): | |
rel_box = torchvision.ops.box_convert(box, 'cxcywh', 'xywh') | |
detections.append( | |
fo.Detection( | |
label=phrase, | |
bounding_box=rel_box, | |
confidence=logit, | |
)) | |
# Store detections in a field name of your choice | |
sample["detections"] = fo.Detections(detections=detections) | |
sample.save() | |
# loads the voxel fiftyone UI ready for viewing the dataset. | |
if view_dataset: | |
session = fo.launch_app(dataset) | |
session.wait() | |
# exports COCO dataset ready for training | |
if export_dataset: | |
dataset.export( | |
'coco_dataset', | |
dataset_type=fo.types.COCODetectionDataset, | |
) | |
# saves bounding boxes plotted on the input images to disk | |
if export_annotated_images: | |
dataset.draw_labels( | |
'images_with_bounding_boxes', | |
label_fields=['detections'] | |
) | |
if __name__ == '__main__': | |
typer.run(main) | |