File size: 14,066 Bytes
14c9181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# Useful Tools

## Visualization Tools

### Dataset Visualization Tool

MMOCR provides a dataset visualization tool `tools/visualizations/browse_datasets.py` to help users troubleshoot possible dataset-related problems. You just need to specify the path to the training config (usually stored in `configs/textdet/dbnet/xxx.py`) or the dataset config (usually stored in `configs/textdet/_base_/datasets/xxx.py`), and the tool will automatically plots the transformed (or original) images and labels.

#### Usage

```bash
python tools/visualizations/browse_dataset.py \
    ${CONFIG_FILE} \
    [-o, --output-dir ${OUTPUT_DIR}] \
    [-p, --phase ${DATASET_PHASE}] \
    [-m, --mode ${DISPLAY_MODE}] \
    [-t, --task ${DATASET_TASK}] \
    [-n, --show-number ${NUMBER_IMAGES_DISPLAY}] \
    [-i, --show-interval ${SHOW_INTERRVAL}] \
    [--cfg-options ${CFG_OPTIONS}]
```

| ARGS                | Type                                  | Description                                                                                                                                      |
| ------------------- | ------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------ |
| config              | str                                   | (required) Path to the config.                                                                                                                   |
| -o, --output-dir    | str                                   | If GUI is not available, specifying an output path to save the visualization results.                                                            |
| -p, --phase         | str                                   | Phase of dataset to visualize. Use "train", "test" or "val" if you just want to visualize the default split. It's also possible to be a dataset variable name, which might be useful when a dataset split has multiple variants in the config. |
| -m, --mode          | `original`, `transformed`, `pipeline` | Display mode: display original pictures or transformed pictures or comparison pictures.`original` only visualizes the original dataset & annotations; `transformed` shows the resulting images processed through all the transforms; `pipeline` shows all the intermediate images. Defaults to "transformed". |
| -t, --task          | `auto`, `textdet`, `textrecog`        | Specify the task type of the dataset. If `auto`, the task type will be inferred from the config. If the script is unable to infer the task type, you need to specify it manually. Defaults to `auto`. |
| -n, --show-number   | int                                   | The number of samples to visualized. If not specified, display all images in the dataset.                                                        |
| -i, --show-interval | float                                 | Interval of visualization (s), defaults to 2.                                                                                                    |
| --cfg-options       | float                                 | Override configs.[Example](./config.md#command-line-modification)                                                                                |

#### Examples

The following example demonstrates how to use the tool to visualize the training data used by the "DBNet_R50_icdar2015" model.

```Bash
# Example: Visualizing the training data used by dbnet_r50dcn_v2_fpnc_1200e_icadr2015 model
python tools/visualizations/browse_dataset.py configs/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015.py
```

By default, the visualization mode is "transformed", and you will see the images & annotations being transformed by the pipeline:

<center class="half">
    <img src="https://user-images.githubusercontent.com/24622904/187611542-01e9aa94-fc12-4756-964b-a0e472522a3a.jpg" width="250"/><img src="https://user-images.githubusercontent.com/24622904/187611555-3f5ea616-863d-4538-884f-bccbebc2f7e7.jpg" width="250"/><img src="https://user-images.githubusercontent.com/24622904/187611581-88be3970-fbfe-4f62-8cdf-7a8a7786af29.jpg" width="250"/>
</center>

If you just want to visualize the original dataset, simply set the mode to "original":

```Bash
python tools/visualizations/browse_dataset.py configs/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015.py -m original
```

<div align=center><img src="https://user-images.githubusercontent.com/22607038/206646570-382d0f26-908a-4ab4-b1a7-5cc31fa70c5f.jpg" style=" width: auto; height: 40%; "></div>

Or, to visualize the entire pipeline:

```Bash
python tools/visualizations/browse_dataset.py configs/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015.py -m pipeline
```

<div align=center><img src="https://user-images.githubusercontent.com/22607038/206637571-287640c0-1f55-453f-a2fc-9f9734b9593f.jpg" style=" width: auto; height: 40%; "></div>

In addition, users can also visualize the original images and their corresponding labels of the dataset by specifying the path to the dataset config file, for example:

```Bash
python tools/visualizations/browse_dataset.py configs/textrecog/_base_/datasets/icdar2015.py
```

Some datasets might have multiple variants. For example, the test split of `icdar2015` textrecog dataset has two variants, which the [base dataset config](/configs/textrecog/_base_/datasets/icdar2015.py) defines as follows:

```python
icdar2015_textrecog_test = dict(
    ann_file='textrecog_test.json',
    # ...
    )

icdar2015_1811_textrecog_test = dict(
    ann_file='textrecog_test_1811.json',
    # ...
)
```

In this case, you can specify the variant name to visualize the corresponding dataset:

```Bash
python tools/visualizations/browse_dataset.py configs/textrecog/_base_/datasets/icdar2015.py -p icdar2015_1811_textrecog_test
```

Based on this tool, users can easily verify if the annotation of a custom dataset is correct.

### Hyper-parameter Scheduler Visualization

This tool aims to help the user to check the hyper-parameter scheduler of the optimizer (without training), which support the "learning rate" or "momentum"

#### Introduce the scheduler visualization tool

```bash
python tools/visualizations/vis_scheduler.py \
    ${CONFIG_FILE} \
    [-p, --parameter ${PARAMETER_NAME}] \
    [-d, --dataset-size ${DATASET_SIZE}] \
    [-n, --ngpus ${NUM_GPUs}] \
    [-s, --save-path ${SAVE_PATH}] \
    [--title ${TITLE}] \
    [--style ${STYLE}] \
    [--window-size ${WINDOW_SIZE}] \
    [--cfg-options]
```

**Description of all arguments**- `config`: The path of a model config file.
- **`-p, --parameter`**: The param to visualize its change curve, choose from "lr" and "momentum". Default to use "lr".
- **`-d, --dataset-size`**: The size of the datasets. If set,`build_dataset` will be skipped and `${DATASET_SIZE}` will be used as the size. Default to use the function `build_dataset`.
- **`-n, --ngpus`**: The number of GPUs used in training, default to be 1.
- **`-s, --save-path`**: The learning rate curve plot save path, default not to save.
- `--title`: Title of figure. If not set, default to be config file name.
- `--style`: Style of plt. If not set, default to be `whitegrid`.
- `--window-size`: The shape of the display window. If not specified, it will be set to `12*7`. If used, it must be in the format `'W*H'`.
- `--cfg-options`: Modifications to the configuration file, refer to [Learn about Configs](../user_guides/config.md).

```{note}
Loading annotations maybe consume much time, you can directly specify the size of the dataset with `-d, dataset-size` to save time.
```

#### How to plot the learning rate curve without training

You can use the following command to plot the step learning rate schedule used in the config `configs/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015.py`:

```bash
python tools/visualizations/vis_scheduler.py configs/textdet/dbnet/dbnet_resnet50-dcnv2_fpnc_1200e_icdar2015.py -d 100
```

<div align=center><img src="https://user-images.githubusercontent.com/43344034/232757392-b29b8e3a-77af-451c-8786-d3b4259ab388.png" style=" width: auto; height: 40%; "></div>

## Analysis Tools

### Offline Evaluation Tool

For saved prediction results, we provide an offline evaluation script `tools/analysis_tools/offline_eval.py`. The following example demonstrates how to use this tool to evaluate the output of the "PSENet" model offline.

```Bash
# When running the test script for the first time, you can save the output of the model by specifying the --save-preds parameter
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} --save-preds
# Example: Testing on PSENet
python tools/test.py configs/textdet/psenet/psenet_r50_fpnf_600e_icdar2015.py epoch_600.pth --save-preds

# Then, using the saved outputs for offline evaluation
python tools/analysis_tool/offline_eval.py ${CONFIG_FILE} ${PRED_FILE}
# Example: Offline evaluation of saved PSENet results
python tools/analysis_tools/offline_eval.py configs/textdet/psenet/psenet_r50_fpnf_600e_icdar2015.py work_dirs/psenet_r50_fpnf_600e_icdar2015/epoch_600.pth_predictions.pkl
```

`-save-preds` saves the output to `work_dir/CONFIG_NAME/MODEL_NAME_predictions.pkl` by default

In addition, based on this tool, users can also convert predictions obtained from other libraries into MMOCR-supported formats, then use MMOCR's built-in metrics to evaluate them.

| ARGS          | Type  | Description                                                       |
| ------------- | ----- | ----------------------------------------------------------------- |
| config        | str   | (required) Path to the config.                                    |
| pkl_results   | str   | (required) The saved predictions.                                 |
| --cfg-options | float | Override configs.[Example](./config.md#command-line-modification) |

### Calculate FLOPs and the Number of Parameters

We provide a method to calculate the FLOPs and the number of parameters, first we install the dependencies using the following command.

```shell
pip install fvcore
```

The usage of the script to calculate FLOPs and the number of parameters is as follows.

```shell
python tools/analysis_tools/get_flops.py ${config} --shape ${IMAGE_SHAPE}
```

| ARGS    | Type | Description                                                                               |
| ------- | ---- | ----------------------------------------------------------------------------------------- |
| config  | str  | (required) Path to the config.                                                            |
| --shape | int  | Image size to use when calculating FLOPs, such as `--shape 320 320`. Default is `640 640` |

For example, you can run the following command to get FLOPs and the number of parameters of `dbnet_resnet18_fpnc_100k_synthtext.py`:

```shell
python tools/analysis_tools/get_flops.py configs/textdet/dbnet/dbnet_resnet18_fpnc_100k_synthtext.py --shape 1024 1024
```

The output is as follows:

```shell
input shape is  (1, 3, 1024, 1024)
| module                    | #parameters or shape | #flops  |
| :------------------------ | :------------------- | :------ |
| model                     | 12.341M              | 63.955G |
| backbone                  | 11.177M              | 38.159G |
| backbone.conv1            | 9.408K               | 2.466G  |
| backbone.conv1.weight     | (64, 3, 7, 7)        |         |
| backbone.bn1              | 0.128K               | 83.886M |
| backbone.bn1.weight       | (64,)                |         |
| backbone.bn1.bias         | (64,)                |         |
| backbone.layer1           | 0.148M               | 9.748G  |
| backbone.layer1.0         | 73.984K              | 4.874G  |
| backbone.layer1.1         | 73.984K              | 4.874G  |
| backbone.layer2           | 0.526M               | 8.642G  |
| backbone.layer2.0         | 0.23M                | 3.79G   |
| backbone.layer2.1         | 0.295M               | 4.853G  |
| backbone.layer3           | 2.1M                 | 8.616G  |
| backbone.layer3.0         | 0.919M               | 3.774G  |
| backbone.layer3.1         | 1.181M               | 4.842G  |
| backbone.layer4           | 8.394M               | 8.603G  |
| backbone.layer4.0         | 3.673M               | 3.766G  |
| backbone.layer4.1         | 4.721M               | 4.837G  |
| neck                      | 0.836M               | 14.887G |
| neck.lateral_convs        | 0.246M               | 2.013G  |
| neck.lateral_convs.0.conv | 16.384K              | 1.074G  |
| neck.lateral_convs.1.conv | 32.768K              | 0.537G  |
| neck.lateral_convs.2.conv | 65.536K              | 0.268G  |
| neck.lateral_convs.3.conv | 0.131M               | 0.134G  |
| neck.smooth_convs         | 0.59M                | 12.835G |
| neck.smooth_convs.0.conv  | 0.147M               | 9.664G  |
| neck.smooth_convs.1.conv  | 0.147M               | 2.416G  |
| neck.smooth_convs.2.conv  | 0.147M               | 0.604G  |
| neck.smooth_convs.3.conv  | 0.147M               | 0.151G  |
| det_head                  | 0.329M               | 10.909G |
| det_head.binarize         | 0.164M               | 10.909G |
| det_head.binarize.0       | 0.147M               | 9.664G  |
| det_head.binarize.1       | 0.128K               | 20.972M |
| det_head.binarize.3       | 16.448K              | 1.074G  |
| det_head.binarize.4       | 0.128K               | 83.886M |
| det_head.binarize.6       | 0.257K               | 67.109M |
| det_head.threshold        | 0.164M               |         |
| det_head.threshold.0      | 0.147M               |         |
| det_head.threshold.1      | 0.128K               |         |
| det_head.threshold.3      | 16.448K              |         |
| det_head.threshold.4      | 0.128K               |         |
| det_head.threshold.6      | 0.257K               |         |
!!!Please be cautious if you use the results in papers. You may need to check if all ops are supported and verify that the flops computation is correct.
```