File size: 27,192 Bytes
14c9181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
# Text Detection

```{note}
This page is a manual preparation guide for datasets not yet supported by [Dataset Preparer](./dataset_preparer.md), which all these scripts will be eventually migrated into.
```

## Overview

|      Dataset      |                          Images                          |                                                    |                          Annotation Files                           |         |     |
| :---------------: | :------------------------------------------------------: | :------------------------------------------------: | :-----------------------------------------------------------------: | :-----: | :-: |
|                   |                                                          |                      training                      |                             validation                              | testing |     |
|     ICDAR2011     |         [homepage](https://rrc.cvc.uab.es/?ch=1)         |                         -                          |                                  -                                  |         |     |
|     ICDAR2017     |  [homepage](https://rrc.cvc.uab.es/?ch=8&com=downloads)  | [instances_training.json](https://download.openmmlab.com/mmocr/data/icdar2017/instances_training.json) | [instances_val.json](https://download.openmmlab.com/mmocr/data/icdar2017/instances_val.json) |    -    |     |
| CurvedSynText150k | [homepage](https://github.com/aim-uofa/AdelaiDet/blob/master/datasets/README.md) \| [Part1](https://drive.google.com/file/d/1OSJ-zId2h3t_-I7g_wUkrK-VqQy153Kj/view?usp=sharing) \| [Part2](https://drive.google.com/file/d/1EzkcOlIgEp5wmEubvHb7-J5EImHExYgY/view?usp=sharing) | [instances_training.json](https://download.openmmlab.com/mmocr/data/curvedsyntext/instances_training.json) |                                  -                                  |    -    |     |
|      DeText       |         [homepage](https://rrc.cvc.uab.es/?ch=9)         |                         -                          |                                  -                                  |    -    |     |
| Lecture Video DB  | [homepage](https://cvit.iiit.ac.in/research/projects/cvit-projects/lecturevideodb) |                         -                          |                                  -                                  |    -    |     |
|       LSVT        |        [homepage](https://rrc.cvc.uab.es/?ch=16)         |                         -                          |                                  -                                  |    -    |     |
|       IMGUR       | [homepage](https://github.com/facebookresearch/IMGUR5K-Handwriting-Dataset) |                         -                          |                                  -                                  |    -    |     |
|       KAIST       | [homepage](http://www.iapr-tc11.org/mediawiki/index.php/KAIST_Scene_Text_Database) |                         -                          |                                  -                                  |    -    |     |
|       MTWI        | [homepage](https://tianchi.aliyun.com/competition/entrance/231685/information?lang=en-us) |                         -                          |                                  -                                  |    -    |     |
|       ReCTS       |        [homepage](https://rrc.cvc.uab.es/?ch=12)         |                         -                          |                                  -                                  |    -    |     |
|     IIIT-ILST     | [homepage](http://cvit.iiit.ac.in/research/projects/cvit-projects/iiit-ilst) |                         -                          |                                  -                                  |    -    |     |
|      VinText      | [homepage](https://github.com/VinAIResearch/dict-guided) |                         -                          |                                  -                                  |    -    |     |
|        BID        | [homepage](https://github.com/ricardobnjunior/Brazilian-Identity-Document-Dataset) |                         -                          |                                  -                                  |    -    |     |
|       RCTW        |      [homepage](https://rctw.vlrlab.net/index.html)      |                         -                          |                                  -                                  |    -    |     |
|     HierText      | [homepage](https://github.com/google-research-datasets/hiertext) |                         -                          |                                  -                                  |    -    |     |
|        ArT        |        [homepage](https://rrc.cvc.uab.es/?ch=14)         |                         -                          |                                  -                                  |    -    |     |

### Install AWS CLI (optional)

- Since there are some datasets that require the [AWS CLI](https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html) to be installed in advance, we provide a quick installation guide here:

  ```bash
    curl "https://awscli.amazonaws.com/awscli-exe-linux-x86_64.zip" -o "awscliv2.zip"
    unzip awscliv2.zip
    sudo ./aws/install
    ./aws/install -i /usr/local/aws-cli -b /usr/local/bin
    !aws configure
    # this command will require you to input keys, you can skip them except
    # for the Default region name
    # AWS Access Key ID [None]:
    # AWS Secret Access Key [None]:
    # Default region name [None]: us-east-1
    # Default output format [None]
  ```

For users in China, these datasets can also be downloaded from [OpenDataLab](https://opendatalab.com/) with high speed:

- [CTW1500](https://opendatalab.com/SCUT-CTW1500?source=OpenMMLab%20GitHub)
- [ICDAR2013](https://opendatalab.com/ICDAR_2013?source=OpenMMLab%20GitHub)
- [ICDAR2015](https://opendatalab.com/ICDAR2015?source=OpenMMLab%20GitHub)
- [Totaltext](https://opendatalab.com/TotalText?source=OpenMMLab%20GitHub)
- [MSRA-TD500](https://opendatalab.com/MSRA-TD500?source=OpenMMLab%20GitHub)

## Important Note

```{note}
**For users who want to train models on CTW1500, ICDAR 2015/2017, and Totaltext dataset,** there might be some images containing orientation info in EXIF data. The default OpenCV
backend used in MMCV would read them and apply the rotation on the images.  However, their gold annotations are made on the raw pixels, and such
inconsistency results in false examples in the training set. Therefore, users should use `dict(type='LoadImageFromFile', color_type='color_ignore_orientation')` in pipelines to change MMCV's default loading behaviour. (see [DBNet's pipeline config](https://github.com/open-mmlab/mmocr/blob/main/configs/_base_/det_pipelines/dbnet_pipeline.py) for example)
```

## ICDAR 2011 (Born-Digital Images)

- Step1: Download `Challenge1_Training_Task12_Images.zip`, `Challenge1_Training_Task1_GT.zip`, `Challenge1_Test_Task12_Images.zip`, and `Challenge1_Test_Task1_GT.zip` from [homepage](https://rrc.cvc.uab.es/?ch=1&com=downloads) `Task 1.1: Text Localization (2013 edition)`.

  ```bash
  mkdir icdar2011 && cd icdar2011
  mkdir imgs && mkdir annotations

  # Download ICDAR 2011
  wget https://rrc.cvc.uab.es/downloads/Challenge1_Training_Task12_Images.zip --no-check-certificate
  wget https://rrc.cvc.uab.es/downloads/Challenge1_Training_Task1_GT.zip --no-check-certificate
  wget https://rrc.cvc.uab.es/downloads/Challenge1_Test_Task12_Images.zip --no-check-certificate
  wget https://rrc.cvc.uab.es/downloads/Challenge1_Test_Task1_GT.zip --no-check-certificate

  # For images
  unzip -q Challenge1_Training_Task12_Images.zip -d imgs/training
  unzip -q Challenge1_Test_Task12_Images.zip -d imgs/test
  # For annotations
  unzip -q Challenge1_Training_Task1_GT.zip -d annotations/training
  unzip -q Challenge1_Test_Task1_GT.zip -d annotations/test

  rm Challenge1_Training_Task12_Images.zip && rm Challenge1_Test_Task12_Images.zip && rm Challenge1_Training_Task1_GT.zip && rm Challenge1_Test_Task1_GT.zip
  ```

- Step 2: Generate `instances_training.json` and `instances_test.json` with the following command:

  ```bash
  python tools/dataset_converters/textdet/ic11_converter.py PATH/TO/icdar2011 --nproc 4
  ```

- After running the above codes, the directory structure should be as follows:

  ```text
  │── icdar2011
  β”‚   β”œβ”€β”€ imgs
  β”‚   β”œβ”€β”€ instances_test.json
  β”‚   └── instances_training.json
  ```

## ICDAR 2017

- Follow similar steps as [ICDAR 2015](#icdar-2015).

- The resulting directory structure looks like the following:

  ```text
  β”œβ”€β”€ icdar2017
  β”‚Β Β  β”œβ”€β”€ imgs
  β”‚Β Β  β”œβ”€β”€ annotations
  β”‚Β Β  β”œβ”€β”€ instances_training.json
  β”‚Β Β  └── instances_val.json
  ```

## CurvedSynText150k

- Step1: Download [syntext1.zip](https://drive.google.com/file/d/1OSJ-zId2h3t_-I7g_wUkrK-VqQy153Kj/view?usp=sharing) and [syntext2.zip](https://drive.google.com/file/d/1EzkcOlIgEp5wmEubvHb7-J5EImHExYgY/view?usp=sharing) to `CurvedSynText150k/`.

- Step2:

  ```bash
  unzip -q syntext1.zip
  mv train.json train1.json
  unzip images.zip
  rm images.zip

  unzip -q syntext2.zip
  mv train.json train2.json
  unzip images.zip
  rm images.zip
  ```

- Step3: Download [instances_training.json](https://download.openmmlab.com/mmocr/data/curvedsyntext/instances_training.json) to `CurvedSynText150k/`

- Or, generate `instances_training.json` with following command:

  ```bash
  python tools/dataset_converters/common/curvedsyntext_converter.py PATH/TO/CurvedSynText150k --nproc 4
  ```

- The resulting directory structure looks like the following:

  ```text
  β”œβ”€β”€ CurvedSynText150k
  β”‚Β Β  β”œβ”€β”€ syntext_word_eng
  β”‚Β Β  β”œβ”€β”€ emcs_imgs
  β”‚Β Β  └── instances_training.json
  ```

## DeText

- Step1: Download `ch9_training_images.zip`, `ch9_training_localization_transcription_gt.zip`, `ch9_validation_images.zip`, and `ch9_validation_localization_transcription_gt.zip` from **Task 3: End to End** on the [homepage](https://rrc.cvc.uab.es/?ch=9).

  ```bash
  mkdir detext && cd detext
  mkdir imgs && mkdir annotations && mkdir imgs/training && mkdir imgs/val && mkdir annotations/training && mkdir annotations/val

  # Download DeText
  wget https://rrc.cvc.uab.es/downloads/ch9_training_images.zip --no-check-certificate
  wget https://rrc.cvc.uab.es/downloads/ch9_training_localization_transcription_gt.zip --no-check-certificate
  wget https://rrc.cvc.uab.es/downloads/ch9_validation_images.zip --no-check-certificate
  wget https://rrc.cvc.uab.es/downloads/ch9_validation_localization_transcription_gt.zip --no-check-certificate

  # Extract images and annotations
  unzip -q ch9_training_images.zip -d imgs/training && unzip -q ch9_training_localization_transcription_gt.zip -d annotations/training && unzip -q ch9_validation_images.zip -d imgs/val && unzip -q ch9_validation_localization_transcription_gt.zip -d annotations/val

  # Remove zips
  rm ch9_training_images.zip && rm ch9_training_localization_transcription_gt.zip && rm ch9_validation_images.zip && rm ch9_validation_localization_transcription_gt.zip
  ```

- Step2: Generate `instances_training.json` and `instances_val.json` with following command:

  ```bash
  python tools/dataset_converters/textdet/detext_converter.py PATH/TO/detext --nproc 4
  ```

- After running the above codes, the directory structure should be as follows:

  ```text
  │── detext
  β”‚Β Β  β”œβ”€β”€ annotations
  β”‚Β Β  β”œβ”€β”€ imgs
  β”‚Β Β  β”œβ”€β”€ instances_test.json
  β”‚Β Β  └── instances_training.json
  ```

## Lecture Video DB

- Step1: Download [IIIT-CVid.zip](http://cdn.iiit.ac.in/cdn/preon.iiit.ac.in/~kartik/IIIT-CVid.zip) to `lv/`.

  ```bash
  mkdir lv && cd lv

  # Download LV dataset
  wget http://cdn.iiit.ac.in/cdn/preon.iiit.ac.in/~kartik/IIIT-CVid.zip
  unzip -q IIIT-CVid.zip

  mv IIIT-CVid/Frames imgs

  rm IIIT-CVid.zip
  ```

- Step2: Generate `instances_training.json`, `instances_val.json`, and `instances_test.json` with following command:

  ```bash
  python tools/dataset_converters/textdet/lv_converter.py PATH/TO/lv --nproc 4
  ```

- The resulting directory structure looks like the following:

  ```text
  │── lv
  β”‚Β Β  β”œβ”€β”€ imgs
  β”‚Β Β  β”œβ”€β”€ instances_test.json
  β”‚Β Β  β”œβ”€β”€ instances_training.json
  β”‚Β Β  └── instances_val.json
  ```

## LSVT

- Step1: Download [train_full_images_0.tar.gz](https://dataset-bj.cdn.bcebos.com/lsvt/train_full_images_0.tar.gz), [train_full_images_1.tar.gz](https://dataset-bj.cdn.bcebos.com/lsvt/train_full_images_1.tar.gz), and [train_full_labels.json](https://dataset-bj.cdn.bcebos.com/lsvt/train_full_labels.json) to `lsvt/`.

  ```bash
  mkdir lsvt && cd lsvt

  # Download LSVT dataset
  wget https://dataset-bj.cdn.bcebos.com/lsvt/train_full_images_0.tar.gz
  wget https://dataset-bj.cdn.bcebos.com/lsvt/train_full_images_1.tar.gz
  wget https://dataset-bj.cdn.bcebos.com/lsvt/train_full_labels.json

  mkdir annotations
  tar -xf train_full_images_0.tar.gz && tar -xf train_full_images_1.tar.gz
  mv train_full_labels.json annotations/ && mv train_full_images_1/*.jpg train_full_images_0/
  mv train_full_images_0 imgs

  rm train_full_images_0.tar.gz && rm train_full_images_1.tar.gz && rm -rf train_full_images_1
  ```

- Step2: Generate `instances_training.json` and `instances_val.json` (optional) with the following command:

  ```bash
  # Annotations of LSVT test split is not publicly available, split a validation
  # set by adding --val-ratio 0.2
  python tools/dataset_converters/textdet/lsvt_converter.py PATH/TO/lsvt
  ```

- After running the above codes, the directory structure should be as follows:

  ```text
  |── lsvt
  β”‚Β Β  β”œβ”€β”€ imgs
  β”‚Β Β  β”œβ”€β”€ instances_training.json
  β”‚Β Β  └── instances_val.json (optional)
  ```

## IMGUR

- Step1: Run `download_imgur5k.py` to download images. You can merge [PR#5](https://github.com/facebookresearch/IMGUR5K-Handwriting-Dataset/pull/5) in your local repository to enable a **much faster** parallel execution of image download.

  ```bash
  mkdir imgur && cd imgur

  git clone https://github.com/facebookresearch/IMGUR5K-Handwriting-Dataset.git

  # Download images from imgur.com. This may take SEVERAL HOURS!
  python ./IMGUR5K-Handwriting-Dataset/download_imgur5k.py --dataset_info_dir ./IMGUR5K-Handwriting-Dataset/dataset_info/ --output_dir ./imgs

  # For annotations
  mkdir annotations
  mv ./IMGUR5K-Handwriting-Dataset/dataset_info/*.json annotations

  rm -rf IMGUR5K-Handwriting-Dataset
  ```

- Step2: Generate `instances_train.json`, `instance_val.json` and `instances_test.json` with the following command:

  ```bash
  python tools/dataset_converters/textdet/imgur_converter.py PATH/TO/imgur
  ```

- After running the above codes, the directory structure should be as follows:

  ```text
  │── imgur
  β”‚   β”œβ”€β”€ annotations
  β”‚   β”œβ”€β”€ imgs
  β”‚   β”œβ”€β”€ instances_test.json
  β”‚   β”œβ”€β”€ instances_training.json
  β”‚   └── instances_val.json
  ```

## KAIST

- Step1: Complete download [KAIST_all.zip](http://www.iapr-tc11.org/mediawiki/index.php/KAIST_Scene_Text_Database) to `kaist/`.

  ```bash
  mkdir kaist && cd kaist
  mkdir imgs && mkdir annotations

  # Download KAIST dataset
  wget http://www.iapr-tc11.org/dataset/KAIST_SceneText/KAIST_all.zip
  unzip -q KAIST_all.zip

  rm KAIST_all.zip
  ```

- Step2: Extract zips:

  ```bash
  python tools/dataset_converters/common/extract_kaist.py PATH/TO/kaist
  ```

- Step3: Generate `instances_training.json` and `instances_val.json` (optional) with following command:

  ```bash
  # Since KAIST does not provide an official split, you can split the dataset by adding --val-ratio 0.2
  python tools/dataset_converters/textdet/kaist_converter.py PATH/TO/kaist --nproc 4
  ```

- After running the above codes, the directory structure should be as follows:

  ```text
  │── kaist
  β”‚   β”œβ”€β”€ annotations
  β”‚   β”œβ”€β”€ imgs
  β”‚   β”œβ”€β”€ instances_training.json
  β”‚   └── instances_val.json (optional)
  ```

## MTWI

- Step1: Download `mtwi_2018_train.zip` from [homepage](https://tianchi.aliyun.com/competition/entrance/231685/information?lang=en-us).

  ```bash
  mkdir mtwi && cd mtwi

  unzip -q mtwi_2018_train.zip
  mv image_train imgs && mv txt_train annotations

  rm mtwi_2018_train.zip
  ```

- Step2: Generate `instances_training.json` and `instance_val.json` (optional) with the following command:

  ```bash
  # Annotations of MTWI test split is not publicly available, split a validation
  # set by adding --val-ratio 0.2
  python tools/dataset_converters/textdet/mtwi_converter.py PATH/TO/mtwi --nproc 4
  ```

- After running the above codes, the directory structure should be as follows:

  ```text
  │── mtwi
  β”‚   β”œβ”€β”€ annotations
  β”‚   β”œβ”€β”€ imgs
  β”‚   β”œβ”€β”€ instances_training.json
  β”‚   └── instances_val.json (optional)
  ```

## ReCTS

- Step1: Download [ReCTS.zip](https://datasets.cvc.uab.es/rrc/ReCTS.zip) to `rects/` from the [homepage](https://rrc.cvc.uab.es/?ch=12&com=downloads).

  ```bash
  mkdir rects && cd rects

  # Download ReCTS dataset
  # You can also find Google Drive link on the dataset homepage
  wget https://datasets.cvc.uab.es/rrc/ReCTS.zip --no-check-certificate
  unzip -q ReCTS.zip

  mv img imgs && mv gt_unicode annotations

  rm ReCTS.zip && rm -rf gt
  ```

- Step2: Generate `instances_training.json` and `instances_val.json` (optional) with following command:

  ```bash
  # Annotations of ReCTS test split is not publicly available, split a validation
  # set by adding --val-ratio 0.2
  python tools/dataset_converters/textdet/rects_converter.py PATH/TO/rects --nproc 4 --val-ratio 0.2
  ```

- After running the above codes, the directory structure should be as follows:

  ```text
  │── rects
  β”‚   β”œβ”€β”€ annotations
  β”‚   β”œβ”€β”€ imgs
  β”‚   β”œβ”€β”€ instances_val.json (optional)
  β”‚   └── instances_training.json
  ```

## ILST

- Step1: Download `IIIT-ILST` from [onedrive](https://iiitaphyd-my.sharepoint.com/:f:/g/personal/minesh_mathew_research_iiit_ac_in/EtLvCozBgaBIoqglF4M-lHABMgNcCDW9rJYKKWpeSQEElQ?e=zToXZP)

- Step2: Run the following commands

  ```bash
  unzip -q IIIT-ILST.zip && rm IIIT-ILST.zip
  cd IIIT-ILST

  # rename files
  cd Devanagari && for i in `ls`; do mv -f $i `echo "devanagari_"$i`; done && cd ..
  cd Malayalam && for i in `ls`; do mv -f $i `echo "malayalam_"$i`; done && cd ..
  cd Telugu && for i in `ls`; do mv -f $i `echo "telugu_"$i`; done && cd ..

  # transfer image path
  mkdir imgs && mkdir annotations
  mv Malayalam/{*jpg,*jpeg} imgs/ && mv Malayalam/*xml annotations/
  mv Devanagari/*jpg imgs/ && mv Devanagari/*xml annotations/
  mv Telugu/*jpeg imgs/ && mv Telugu/*xml annotations/

  # remove unnecessary files
  rm -rf Devanagari && rm -rf Malayalam && rm -rf Telugu && rm -rf README.txt
  ```

- Step3: Generate `instances_training.json` and `instances_val.json` (optional). Since the original dataset doesn't have a validation set, you may specify `--val-ratio` to split the dataset. E.g., if val-ratio is 0.2, then 20% of the data are left out as the validation set in this example.

  ```bash
  python tools/dataset_converters/textdet/ilst_converter.py    PATH/TO/IIIT-ILST --nproc 4
  ```

- After running the above codes, the directory structure should be as follows:

  ```text
  │── IIIT-ILST
  β”‚Β Β  β”œβ”€β”€ annotations
  β”‚Β Β  β”œβ”€β”€ imgs
  β”‚Β Β  β”œβ”€β”€ instances_val.json (optional)
  β”‚Β Β  └── instances_training.json
  ```

## VinText

- Step1: Download [vintext.zip](https://drive.google.com/drive/my-drive) to `vintext`

  ```bash
  mkdir vintext && cd vintext

  # Download dataset from google drive
  wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1UUQhNvzgpZy7zXBFQp0Qox-BBjunZ0ml' -O- β”‚ sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=1UUQhNvzgpZy7zXBFQp0Qox-BBjunZ0ml" -O vintext.zip && rm -rf /tmp/cookies.txt

  # Extract images and annotations
  unzip -q vintext.zip && rm vintext.zip
  mv vietnamese/labels ./ && mv vietnamese/test_image ./ && mv vietnamese/train_images ./ && mv vietnamese/unseen_test_images ./
  rm -rf vietnamese

  # Rename files
  mv labels annotations && mv test_image test && mv train_images  training && mv unseen_test_images  unseen_test
  mkdir imgs
  mv training imgs/ && mv test imgs/ && mv unseen_test imgs/
  ```

- Step2: Generate `instances_training.json`, `instances_test.json` and `instances_unseen_test.json`

  ```bash
  python tools/dataset_converters/textdet/vintext_converter.py PATH/TO/vintext --nproc 4
  ```

- After running the above codes, the directory structure should be as follows:

  ```text
  │── vintext
  β”‚Β Β  β”œβ”€β”€ annotations
  β”‚Β Β  β”œβ”€β”€ imgs
  β”‚Β Β  β”œβ”€β”€ instances_test.json
  β”‚Β Β  β”œβ”€β”€ instances_unseen_test.json
  β”‚Β Β  └── instances_training.json
  ```

## BID

- Step1: Download [BID Dataset.zip](https://drive.google.com/file/d/1Oi88TRcpdjZmJ79WDLb9qFlBNG8q2De6/view)

- Step2: Run the following commands to preprocess the dataset

  ```bash
  # Rename
  mv BID\ Dataset.zip BID_Dataset.zip

  # Unzip and Rename
  unzip -q BID_Dataset.zip && rm BID_Dataset.zip
  mv BID\ Dataset BID

  # The BID dataset has a problem of permission, and you may
  # add permission for this file
  chmod -R 777 BID
  cd BID
  mkdir imgs && mkdir annotations

  # For images and annotations
  mv CNH_Aberta/*in.jpg imgs && mv CNH_Aberta/*txt annotations && rm -rf CNH_Aberta
  mv CNH_Frente/*in.jpg imgs && mv CNH_Frente/*txt annotations && rm -rf CNH_Frente
  mv CNH_Verso/*in.jpg imgs && mv CNH_Verso/*txt annotations && rm -rf CNH_Verso
  mv CPF_Frente/*in.jpg imgs && mv CPF_Frente/*txt annotations && rm -rf CPF_Frente
  mv CPF_Verso/*in.jpg imgs && mv CPF_Verso/*txt annotations && rm -rf CPF_Verso
  mv RG_Aberto/*in.jpg imgs && mv RG_Aberto/*txt annotations && rm -rf RG_Aberto
  mv RG_Frente/*in.jpg imgs && mv RG_Frente/*txt annotations && rm -rf RG_Frente
  mv RG_Verso/*in.jpg imgs && mv RG_Verso/*txt annotations && rm -rf RG_Verso

  # Remove unnecessary files
  rm -rf desktop.ini
  ```

- Step3: - Step3: Generate `instances_training.json` and `instances_val.json` (optional). Since the original dataset doesn't have a validation set, you may specify `--val-ratio` to split the dataset. E.g., if val-ratio is 0.2, then 20% of the data are left out as the validation set in this example.

  ```bash
  python tools/dataset_converters/textdet/bid_converter.py PATH/TO/BID --nproc 4
  ```

- After running the above codes, the directory structure should be as follows:

  ```text
  │── BID
  β”‚Β Β  β”œβ”€β”€ annotations
  β”‚Β Β  β”œβ”€β”€ imgs
  β”‚Β Β  β”œβ”€β”€ instances_training.json
  β”‚Β Β  └── instances_val.json (optional)
  ```

## RCTW

- Step1: Download `train_images.zip.001`, `train_images.zip.002`, and `train_gts.zip` from the [homepage](https://rctw.vlrlab.net/dataset.html), extract the zips to `rctw/imgs` and `rctw/annotations`, respectively.

- Step2: Generate `instances_training.json` and `instances_val.json` (optional). Since the test annotations are not publicly available, you may specify `--val-ratio` to split the dataset. E.g., if val-ratio is 0.2, then 20% of the data are left out as the validation set in this example.

  ```bash
  # Annotations of RCTW test split is not publicly available, split a validation set by adding --val-ratio 0.2
  python tools/dataset_converters/textdet/rctw_converter.py PATH/TO/rctw --nproc 4
  ```

- After running the above codes, the directory structure should be as follows:

  ```text
  │── rctw
  β”‚Β Β  β”œβ”€β”€ annotations
  β”‚Β Β  β”œβ”€β”€ imgs
  β”‚Β Β  β”œβ”€β”€ instances_training.json
  β”‚Β Β  └── instances_val.json (optional)
  ```

## HierText

- Step1 (optional): Install [AWS CLI](https://mmocr.readthedocs.io/en/latest/datasets/det.html#install-aws-cli-optional).

- Step2: Clone [HierText](https://github.com/google-research-datasets/hiertext) repo to get annotations

  ```bash
  mkdir HierText
  git clone https://github.com/google-research-datasets/hiertext.git
  ```

- Step3: Download `train.tgz`, `validation.tgz` from aws

  ```bash
  aws s3 --no-sign-request cp s3://open-images-dataset/ocr/train.tgz .
  aws s3 --no-sign-request cp s3://open-images-dataset/ocr/validation.tgz .
  ```

- Step4: Process raw data

  ```bash
  # process annotations
  mv hiertext/gt ./
  rm -rf hiertext
  mv gt annotations
  gzip -d annotations/train.jsonl.gz
  gzip -d annotations/validation.jsonl.gz
  # process images
  mkdir imgs
  mv train.tgz imgs/
  mv validation.tgz imgs/
  tar -xzvf imgs/train.tgz
  tar -xzvf imgs/validation.tgz
  ```

- Step5: Generate `instances_training.json` and `instance_val.json`. HierText includes different levels of annotation, from paragraph, line, to word. Check the original [paper](https://arxiv.org/pdf/2203.15143.pdf) for details. E.g. set `--level paragraph` to get paragraph-level annotation. Set `--level line` to get line-level annotation. set `--level word` to get word-level annotation.

  ```bash
  # Collect word annotation from HierText  --level word
  python tools/dataset_converters/textdet/hiertext_converter.py PATH/TO/HierText --level word --nproc 4
  ```

- After running the above codes, the directory structure should be as follows:

  ```text
  │── HierText
  β”‚Β Β  β”œβ”€β”€ annotations
  β”‚Β Β  β”œβ”€β”€ imgs
  β”‚Β Β  β”œβ”€β”€ instances_training.json
  β”‚Β Β  └── instances_val.json
  ```

## ArT

- Step1: Download `train_images.tar.gz`, and `train_labels.json` from the [homepage](https://rrc.cvc.uab.es/?ch=14&com=downloads) to `art/`

  ```bash
  mkdir art && cd art
  mkdir annotations

  # Download ArT dataset
  wget https://dataset-bj.cdn.bcebos.com/art/train_images.tar.gz --no-check-certificate
  wget https://dataset-bj.cdn.bcebos.com/art/train_labels.json --no-check-certificate

  # Extract
  tar -xf train_images.tar.gz
  mv train_images imgs
  mv train_labels.json annotations/

  # Remove unnecessary files
  rm train_images.tar.gz
  ```

- Step2: Generate `instances_training.json` and `instances_val.json` (optional). Since the test annotations are not publicly available, you may specify `--val-ratio` to split the dataset. E.g., if val-ratio is 0.2, then 20% of the data are left out as the validation set in this example.

  ```bash
  # Annotations of ArT test split is not publicly available, split a validation set by adding --val-ratio 0.2
  python tools/data/textdet/art_converter.py PATH/TO/art --nproc 4
  ```

- After running the above codes, the directory structure should be as follows:

  ```text
  │── art
  β”‚Β Β  β”œβ”€β”€ annotations
  β”‚Β Β  β”œβ”€β”€ imgs
  β”‚Β Β  β”œβ”€β”€ instances_training.json
  β”‚Β Β  └── instances_val.json (optional)
  ```