Spaces:
Sleeping
Sleeping
File size: 10,339 Bytes
d916065 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
# Natural Language Toolkit: Tokenizer Utilities
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Steven Bird <[email protected]>
# URL: <https://www.nltk.org>
# For license information, see LICENSE.TXT
from re import finditer
from xml.sax.saxutils import escape, unescape
def string_span_tokenize(s, sep):
r"""
Return the offsets of the tokens in *s*, as a sequence of ``(start, end)``
tuples, by splitting the string at each occurrence of *sep*.
>>> from nltk.tokenize.util import string_span_tokenize
>>> s = '''Good muffins cost $3.88\nin New York. Please buy me
... two of them.\n\nThanks.'''
>>> list(string_span_tokenize(s, " ")) # doctest: +NORMALIZE_WHITESPACE
[(0, 4), (5, 12), (13, 17), (18, 26), (27, 30), (31, 36), (37, 37),
(38, 44), (45, 48), (49, 55), (56, 58), (59, 73)]
:param s: the string to be tokenized
:type s: str
:param sep: the token separator
:type sep: str
:rtype: iter(tuple(int, int))
"""
if len(sep) == 0:
raise ValueError("Token delimiter must not be empty")
left = 0
while True:
try:
right = s.index(sep, left)
if right != 0:
yield left, right
except ValueError:
if left != len(s):
yield left, len(s)
break
left = right + len(sep)
def regexp_span_tokenize(s, regexp):
r"""
Return the offsets of the tokens in *s*, as a sequence of ``(start, end)``
tuples, by splitting the string at each successive match of *regexp*.
>>> from nltk.tokenize.util import regexp_span_tokenize
>>> s = '''Good muffins cost $3.88\nin New York. Please buy me
... two of them.\n\nThanks.'''
>>> list(regexp_span_tokenize(s, r'\s')) # doctest: +NORMALIZE_WHITESPACE
[(0, 4), (5, 12), (13, 17), (18, 23), (24, 26), (27, 30), (31, 36),
(38, 44), (45, 48), (49, 51), (52, 55), (56, 58), (59, 64), (66, 73)]
:param s: the string to be tokenized
:type s: str
:param regexp: regular expression that matches token separators (must not be empty)
:type regexp: str
:rtype: iter(tuple(int, int))
"""
left = 0
for m in finditer(regexp, s):
right, next = m.span()
if right != left:
yield left, right
left = next
yield left, len(s)
def spans_to_relative(spans):
r"""
Return a sequence of relative spans, given a sequence of spans.
>>> from nltk.tokenize import WhitespaceTokenizer
>>> from nltk.tokenize.util import spans_to_relative
>>> s = '''Good muffins cost $3.88\nin New York. Please buy me
... two of them.\n\nThanks.'''
>>> list(spans_to_relative(WhitespaceTokenizer().span_tokenize(s))) # doctest: +NORMALIZE_WHITESPACE
[(0, 4), (1, 7), (1, 4), (1, 5), (1, 2), (1, 3), (1, 5), (2, 6),
(1, 3), (1, 2), (1, 3), (1, 2), (1, 5), (2, 7)]
:param spans: a sequence of (start, end) offsets of the tokens
:type spans: iter(tuple(int, int))
:rtype: iter(tuple(int, int))
"""
prev = 0
for left, right in spans:
yield left - prev, right - left
prev = right
class CJKChars:
"""
An object that enumerates the code points of the CJK characters as listed on
https://en.wikipedia.org/wiki/Basic_Multilingual_Plane#Basic_Multilingual_Plane
This is a Python port of the CJK code point enumerations of Moses tokenizer:
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/detokenizer.perl#L309
"""
# Hangul Jamo (1100β11FF)
Hangul_Jamo = (4352, 4607) # (ord(u"\u1100"), ord(u"\u11ff"))
# CJK Radicals Supplement (2E80β2EFF)
# Kangxi Radicals (2F00β2FDF)
# Ideographic Description Characters (2FF0β2FFF)
# CJK Symbols and Punctuation (3000β303F)
# Hiragana (3040β309F)
# Katakana (30A0β30FF)
# Bopomofo (3100β312F)
# Hangul Compatibility Jamo (3130β318F)
# Kanbun (3190β319F)
# Bopomofo Extended (31A0β31BF)
# CJK Strokes (31C0β31EF)
# Katakana Phonetic Extensions (31F0β31FF)
# Enclosed CJK Letters and Months (3200β32FF)
# CJK Compatibility (3300β33FF)
# CJK Unified Ideographs Extension A (3400β4DBF)
# Yijing Hexagram Symbols (4DC0β4DFF)
# CJK Unified Ideographs (4E00β9FFF)
# Yi Syllables (A000βA48F)
# Yi Radicals (A490βA4CF)
CJK_Radicals = (11904, 42191) # (ord(u"\u2e80"), ord(u"\ua4cf"))
# Phags-pa (A840βA87F)
Phags_Pa = (43072, 43135) # (ord(u"\ua840"), ord(u"\ua87f"))
# Hangul Syllables (AC00βD7AF)
Hangul_Syllables = (44032, 55215) # (ord(u"\uAC00"), ord(u"\uD7AF"))
# CJK Compatibility Ideographs (F900βFAFF)
CJK_Compatibility_Ideographs = (63744, 64255) # (ord(u"\uF900"), ord(u"\uFAFF"))
# CJK Compatibility Forms (FE30βFE4F)
CJK_Compatibility_Forms = (65072, 65103) # (ord(u"\uFE30"), ord(u"\uFE4F"))
# Range U+FF65βFFDC encodes halfwidth forms, of Katakana and Hangul characters
Katakana_Hangul_Halfwidth = (65381, 65500) # (ord(u"\uFF65"), ord(u"\uFFDC"))
# Supplementary Ideographic Plane 20000β2FFFF
Supplementary_Ideographic_Plane = (
131072,
196607,
) # (ord(u"\U00020000"), ord(u"\U0002FFFF"))
ranges = [
Hangul_Jamo,
CJK_Radicals,
Phags_Pa,
Hangul_Syllables,
CJK_Compatibility_Ideographs,
CJK_Compatibility_Forms,
Katakana_Hangul_Halfwidth,
Supplementary_Ideographic_Plane,
]
def is_cjk(character):
"""
Python port of Moses' code to check for CJK character.
>>> CJKChars().ranges
[(4352, 4607), (11904, 42191), (43072, 43135), (44032, 55215), (63744, 64255), (65072, 65103), (65381, 65500), (131072, 196607)]
>>> is_cjk(u'\u33fe')
True
>>> is_cjk(u'\uFE5F')
False
:param character: The character that needs to be checked.
:type character: char
:return: bool
"""
return any(
[
start <= ord(character) <= end
for start, end in [
(4352, 4607),
(11904, 42191),
(43072, 43135),
(44032, 55215),
(63744, 64255),
(65072, 65103),
(65381, 65500),
(131072, 196607),
]
]
)
def xml_escape(text):
"""
This function transforms the input text into an "escaped" version suitable
for well-formed XML formatting.
Note that the default xml.sax.saxutils.escape() function don't escape
some characters that Moses does so we have to manually add them to the
entities dictionary.
>>> input_str = ''')| & < > ' " ] ['''
>>> expected_output = ''')| & < > ' " ] ['''
>>> escape(input_str) == expected_output
True
>>> xml_escape(input_str)
')| & < > ' " ] ['
:param text: The text that needs to be escaped.
:type text: str
:rtype: str
"""
return escape(
text,
entities={
r"'": r"'",
r'"': r""",
r"|": r"|",
r"[": r"[",
r"]": r"]",
},
)
def xml_unescape(text):
"""
This function transforms the "escaped" version suitable
for well-formed XML formatting into humanly-readable string.
Note that the default xml.sax.saxutils.unescape() function don't unescape
some characters that Moses does so we have to manually add them to the
entities dictionary.
>>> from xml.sax.saxutils import unescape
>>> s = ')| & < > ' " ] ['
>>> expected = ''')| & < > \' " ] ['''
>>> xml_unescape(s) == expected
True
:param text: The text that needs to be unescaped.
:type text: str
:rtype: str
"""
return unescape(
text,
entities={
r"'": r"'",
r""": r'"',
r"|": r"|",
r"[": r"[",
r"]": r"]",
},
)
def align_tokens(tokens, sentence):
"""
This module attempt to find the offsets of the tokens in *s*, as a sequence
of ``(start, end)`` tuples, given the tokens and also the source string.
>>> from nltk.tokenize import TreebankWordTokenizer
>>> from nltk.tokenize.util import align_tokens
>>> s = str("The plane, bound for St Petersburg, crashed in Egypt's "
... "Sinai desert just 23 minutes after take-off from Sharm el-Sheikh "
... "on Saturday.")
>>> tokens = TreebankWordTokenizer().tokenize(s)
>>> expected = [(0, 3), (4, 9), (9, 10), (11, 16), (17, 20), (21, 23),
... (24, 34), (34, 35), (36, 43), (44, 46), (47, 52), (52, 54),
... (55, 60), (61, 67), (68, 72), (73, 75), (76, 83), (84, 89),
... (90, 98), (99, 103), (104, 109), (110, 119), (120, 122),
... (123, 131), (131, 132)]
>>> output = list(align_tokens(tokens, s))
>>> len(tokens) == len(expected) == len(output) # Check that length of tokens and tuples are the same.
True
>>> expected == list(align_tokens(tokens, s)) # Check that the output is as expected.
True
>>> tokens == [s[start:end] for start, end in output] # Check that the slices of the string corresponds to the tokens.
True
:param tokens: The list of strings that are the result of tokenization
:type tokens: list(str)
:param sentence: The original string
:type sentence: str
:rtype: list(tuple(int,int))
"""
point = 0
offsets = []
for token in tokens:
try:
start = sentence.index(token, point)
except ValueError as e:
raise ValueError(f'substring "{token}" not found in "{sentence}"') from e
point = start + len(token)
offsets.append((start, point))
return offsets
|