Spaces:
Sleeping
Sleeping
File size: 10,370 Bytes
d916065 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
.. Copyright (C) 2001-2023 NLTK Project
.. For license information, see LICENSE.TXT
======================
Nonmonotonic Reasoning
======================
>>> from nltk.test.setup_fixt import check_binary
>>> check_binary('mace4')
>>> from nltk import *
>>> from nltk.inference.nonmonotonic import *
>>> from nltk.sem import logic
>>> logic._counter._value = 0
>>> read_expr = logic.Expression.fromstring
------------------------
Closed Domain Assumption
------------------------
The only entities in the domain are those found in the assumptions or goal.
If the domain only contains "A" and "B", then the expression "exists x.P(x)" can
be replaced with "P(A) | P(B)" and an expression "all x.P(x)" can be replaced
with "P(A) & P(B)".
>>> p1 = read_expr(r'all x.(man(x) -> mortal(x))')
>>> p2 = read_expr(r'man(Socrates)')
>>> c = read_expr(r'mortal(Socrates)')
>>> prover = Prover9Command(c, [p1,p2])
>>> prover.prove()
True
>>> cdp = ClosedDomainProver(prover)
>>> for a in cdp.assumptions(): print(a) # doctest: +SKIP
(man(Socrates) -> mortal(Socrates))
man(Socrates)
>>> cdp.prove()
True
>>> p1 = read_expr(r'exists x.walk(x)')
>>> p2 = read_expr(r'man(Socrates)')
>>> c = read_expr(r'walk(Socrates)')
>>> prover = Prover9Command(c, [p1,p2])
>>> prover.prove()
False
>>> cdp = ClosedDomainProver(prover)
>>> for a in cdp.assumptions(): print(a) # doctest: +SKIP
walk(Socrates)
man(Socrates)
>>> cdp.prove()
True
>>> p1 = read_expr(r'exists x.walk(x)')
>>> p2 = read_expr(r'man(Socrates)')
>>> p3 = read_expr(r'-walk(Bill)')
>>> c = read_expr(r'walk(Socrates)')
>>> prover = Prover9Command(c, [p1,p2,p3])
>>> prover.prove()
False
>>> cdp = ClosedDomainProver(prover)
>>> for a in cdp.assumptions(): print(a) # doctest: +SKIP
(walk(Socrates) | walk(Bill))
man(Socrates)
-walk(Bill)
>>> cdp.prove()
True
>>> p1 = read_expr(r'walk(Socrates)')
>>> p2 = read_expr(r'walk(Bill)')
>>> c = read_expr(r'all x.walk(x)')
>>> prover = Prover9Command(c, [p1,p2])
>>> prover.prove()
False
>>> cdp = ClosedDomainProver(prover)
>>> for a in cdp.assumptions(): print(a) # doctest: +SKIP
walk(Socrates)
walk(Bill)
>>> print(cdp.goal()) # doctest: +SKIP
(walk(Socrates) & walk(Bill))
>>> cdp.prove()
True
>>> p1 = read_expr(r'girl(mary)')
>>> p2 = read_expr(r'dog(rover)')
>>> p3 = read_expr(r'all x.(girl(x) -> -dog(x))')
>>> p4 = read_expr(r'all x.(dog(x) -> -girl(x))')
>>> p5 = read_expr(r'chase(mary, rover)')
>>> c = read_expr(r'exists y.(dog(y) & all x.(girl(x) -> chase(x,y)))')
>>> prover = Prover9Command(c, [p1,p2,p3,p4,p5])
>>> print(prover.prove())
False
>>> cdp = ClosedDomainProver(prover)
>>> for a in cdp.assumptions(): print(a) # doctest: +SKIP
girl(mary)
dog(rover)
((girl(rover) -> -dog(rover)) & (girl(mary) -> -dog(mary)))
((dog(rover) -> -girl(rover)) & (dog(mary) -> -girl(mary)))
chase(mary,rover)
>>> print(cdp.goal()) # doctest: +SKIP
((dog(rover) & (girl(rover) -> chase(rover,rover)) & (girl(mary) -> chase(mary,rover))) | (dog(mary) & (girl(rover) -> chase(rover,mary)) & (girl(mary) -> chase(mary,mary))))
>>> print(cdp.prove())
True
-----------------------
Unique Names Assumption
-----------------------
No two entities in the domain represent the same entity unless it can be
explicitly proven that they do. Therefore, if the domain contains "A" and "B",
then add the assumption "-(A = B)" if it is not the case that
"<assumptions> \|- (A = B)".
>>> p1 = read_expr(r'man(Socrates)')
>>> p2 = read_expr(r'man(Bill)')
>>> c = read_expr(r'exists x.exists y.-(x = y)')
>>> prover = Prover9Command(c, [p1,p2])
>>> prover.prove()
False
>>> unp = UniqueNamesProver(prover)
>>> for a in unp.assumptions(): print(a) # doctest: +SKIP
man(Socrates)
man(Bill)
-(Socrates = Bill)
>>> unp.prove()
True
>>> p1 = read_expr(r'all x.(walk(x) -> (x = Socrates))')
>>> p2 = read_expr(r'Bill = William')
>>> p3 = read_expr(r'Bill = Billy')
>>> c = read_expr(r'-walk(William)')
>>> prover = Prover9Command(c, [p1,p2,p3])
>>> prover.prove()
False
>>> unp = UniqueNamesProver(prover)
>>> for a in unp.assumptions(): print(a) # doctest: +SKIP
all x.(walk(x) -> (x = Socrates))
(Bill = William)
(Bill = Billy)
-(William = Socrates)
-(Billy = Socrates)
-(Socrates = Bill)
>>> unp.prove()
True
-----------------------
Closed World Assumption
-----------------------
The only entities that have certain properties are those that is it stated
have the properties. We accomplish this assumption by "completing" predicates.
If the assumptions contain "P(A)", then "all x.(P(x) -> (x=A))" is the completion
of "P". If the assumptions contain "all x.(ostrich(x) -> bird(x))", then
"all x.(bird(x) -> ostrich(x))" is the completion of "bird". If the
assumptions don't contain anything that are "P", then "all x.-P(x)" is the
completion of "P".
>>> p1 = read_expr(r'walk(Socrates)')
>>> p2 = read_expr(r'-(Socrates = Bill)')
>>> c = read_expr(r'-walk(Bill)')
>>> prover = Prover9Command(c, [p1,p2])
>>> prover.prove()
False
>>> cwp = ClosedWorldProver(prover)
>>> for a in cwp.assumptions(): print(a) # doctest: +SKIP
walk(Socrates)
-(Socrates = Bill)
all z1.(walk(z1) -> (z1 = Socrates))
>>> cwp.prove()
True
>>> p1 = read_expr(r'see(Socrates, John)')
>>> p2 = read_expr(r'see(John, Mary)')
>>> p3 = read_expr(r'-(Socrates = John)')
>>> p4 = read_expr(r'-(John = Mary)')
>>> c = read_expr(r'-see(Socrates, Mary)')
>>> prover = Prover9Command(c, [p1,p2,p3,p4])
>>> prover.prove()
False
>>> cwp = ClosedWorldProver(prover)
>>> for a in cwp.assumptions(): print(a) # doctest: +SKIP
see(Socrates,John)
see(John,Mary)
-(Socrates = John)
-(John = Mary)
all z3 z4.(see(z3,z4) -> (((z3 = Socrates) & (z4 = John)) | ((z3 = John) & (z4 = Mary))))
>>> cwp.prove()
True
>>> p1 = read_expr(r'all x.(ostrich(x) -> bird(x))')
>>> p2 = read_expr(r'bird(Tweety)')
>>> p3 = read_expr(r'-ostrich(Sam)')
>>> p4 = read_expr(r'Sam != Tweety')
>>> c = read_expr(r'-bird(Sam)')
>>> prover = Prover9Command(c, [p1,p2,p3,p4])
>>> prover.prove()
False
>>> cwp = ClosedWorldProver(prover)
>>> for a in cwp.assumptions(): print(a) # doctest: +SKIP
all x.(ostrich(x) -> bird(x))
bird(Tweety)
-ostrich(Sam)
-(Sam = Tweety)
all z7.-ostrich(z7)
all z8.(bird(z8) -> ((z8 = Tweety) | ostrich(z8)))
>>> print(cwp.prove())
True
-----------------------
Multi-Decorator Example
-----------------------
Decorators can be nested to utilize multiple assumptions.
>>> p1 = read_expr(r'see(Socrates, John)')
>>> p2 = read_expr(r'see(John, Mary)')
>>> c = read_expr(r'-see(Socrates, Mary)')
>>> prover = Prover9Command(c, [p1,p2])
>>> print(prover.prove())
False
>>> cmd = ClosedDomainProver(UniqueNamesProver(ClosedWorldProver(prover)))
>>> print(cmd.prove())
True
-----------------
Default Reasoning
-----------------
>>> logic._counter._value = 0
>>> premises = []
define the taxonomy
>>> premises.append(read_expr(r'all x.(elephant(x) -> animal(x))'))
>>> premises.append(read_expr(r'all x.(bird(x) -> animal(x))'))
>>> premises.append(read_expr(r'all x.(dove(x) -> bird(x))'))
>>> premises.append(read_expr(r'all x.(ostrich(x) -> bird(x))'))
>>> premises.append(read_expr(r'all x.(flying_ostrich(x) -> ostrich(x))'))
default the properties using abnormalities
>>> premises.append(read_expr(r'all x.((animal(x) & -Ab1(x)) -> -fly(x))')) #normal animals don't fly
>>> premises.append(read_expr(r'all x.((bird(x) & -Ab2(x)) -> fly(x))')) #normal birds fly
>>> premises.append(read_expr(r'all x.((ostrich(x) & -Ab3(x)) -> -fly(x))')) #normal ostriches don't fly
specify abnormal entities
>>> premises.append(read_expr(r'all x.(bird(x) -> Ab1(x))')) #flight
>>> premises.append(read_expr(r'all x.(ostrich(x) -> Ab2(x))')) #non-flying bird
>>> premises.append(read_expr(r'all x.(flying_ostrich(x) -> Ab3(x))')) #flying ostrich
define entities
>>> premises.append(read_expr(r'elephant(el)'))
>>> premises.append(read_expr(r'dove(do)'))
>>> premises.append(read_expr(r'ostrich(os)'))
print the augmented assumptions list
>>> prover = Prover9Command(None, premises)
>>> command = UniqueNamesProver(ClosedWorldProver(prover))
>>> for a in command.assumptions(): print(a) # doctest: +SKIP
all x.(elephant(x) -> animal(x))
all x.(bird(x) -> animal(x))
all x.(dove(x) -> bird(x))
all x.(ostrich(x) -> bird(x))
all x.(flying_ostrich(x) -> ostrich(x))
all x.((animal(x) & -Ab1(x)) -> -fly(x))
all x.((bird(x) & -Ab2(x)) -> fly(x))
all x.((ostrich(x) & -Ab3(x)) -> -fly(x))
all x.(bird(x) -> Ab1(x))
all x.(ostrich(x) -> Ab2(x))
all x.(flying_ostrich(x) -> Ab3(x))
elephant(el)
dove(do)
ostrich(os)
all z1.(animal(z1) -> (elephant(z1) | bird(z1)))
all z2.(Ab1(z2) -> bird(z2))
all z3.(bird(z3) -> (dove(z3) | ostrich(z3)))
all z4.(dove(z4) -> (z4 = do))
all z5.(Ab2(z5) -> ostrich(z5))
all z6.(Ab3(z6) -> flying_ostrich(z6))
all z7.(ostrich(z7) -> ((z7 = os) | flying_ostrich(z7)))
all z8.-flying_ostrich(z8)
all z9.(elephant(z9) -> (z9 = el))
-(el = os)
-(el = do)
-(os = do)
>>> UniqueNamesProver(ClosedWorldProver(Prover9Command(read_expr('-fly(el)'), premises))).prove()
True
>>> UniqueNamesProver(ClosedWorldProver(Prover9Command(read_expr('fly(do)'), premises))).prove()
True
>>> UniqueNamesProver(ClosedWorldProver(Prover9Command(read_expr('-fly(os)'), premises))).prove()
True
|