File size: 28,870 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
.. Copyright (C) 2001-2023 NLTK Project
.. For license information, see LICENSE.TXT

=========================
 Feature Grammar Parsing
=========================

.. definitions from nltk_book/definitions.rst

.. role:: feat
    :class: feature
.. role:: fval
     :class: fval
.. |rarr| unicode:: U+2192 .. right arrow
.. |dot| unicode:: U+2022 .. bullet
.. |pi| unicode:: U+03C0

Grammars can be parsed from strings.

    >>> import nltk
    >>> from nltk import grammar, parse
    >>> g = """
    ... % start DP
    ... DP[AGR=?a] -> D[AGR=?a] N[AGR=?a]
    ... D[AGR=[NUM='sg', PERS=3]] -> 'this' | 'that'
    ... D[AGR=[NUM='pl', PERS=3]] -> 'these' | 'those'
    ... D[AGR=[NUM='pl', PERS=1]] -> 'we'
    ... D[AGR=[PERS=2]] -> 'you'
    ... N[AGR=[NUM='sg', GND='m']] -> 'boy'
    ... N[AGR=[NUM='pl', GND='m']] -> 'boys'
    ... N[AGR=[NUM='sg', GND='f']] -> 'girl'
    ... N[AGR=[NUM='pl', GND='f']] -> 'girls'
    ... N[AGR=[NUM='sg']] -> 'student'
    ... N[AGR=[NUM='pl']] -> 'students'
    ... """
    >>> grammar = grammar.FeatureGrammar.fromstring(g)
    >>> tokens = 'these girls'.split()
    >>> parser = parse.FeatureEarleyChartParser(grammar)
    >>> trees = parser.parse(tokens)
    >>> for tree in trees: print(tree)
    (DP[AGR=[GND='f', NUM='pl', PERS=3]]
      (D[AGR=[NUM='pl', PERS=3]] these)
      (N[AGR=[GND='f', NUM='pl']] girls))

In general, when we are trying to develop even a very small grammar,
it is convenient to put the rules in a file where they can be edited,
tested and revised. Let's assume that we have saved feat0cfg as a file named
``'feat0.fcfg'`` and placed it in the NLTK ``data`` directory. We can
inspect it as follows:

    >>> nltk.data.show_cfg('grammars/book_grammars/feat0.fcfg')
    % start S
    # ###################
    # Grammar Productions
    # ###################
    # S expansion productions
    S -> NP[NUM=?n] VP[NUM=?n]
    # NP expansion productions
    NP[NUM=?n] -> N[NUM=?n]
    NP[NUM=?n] -> PropN[NUM=?n]
    NP[NUM=?n] -> Det[NUM=?n] N[NUM=?n]
    NP[NUM=pl] -> N[NUM=pl]
    # VP expansion productions
    VP[TENSE=?t, NUM=?n] -> IV[TENSE=?t, NUM=?n]
    VP[TENSE=?t, NUM=?n] -> TV[TENSE=?t, NUM=?n] NP
    # ###################
    # Lexical Productions
    # ###################
    Det[NUM=sg] -> 'this' | 'every'
    Det[NUM=pl] -> 'these' | 'all'
    Det -> 'the' | 'some' | 'several'
    PropN[NUM=sg]-> 'Kim' | 'Jody'
    N[NUM=sg] -> 'dog' | 'girl' | 'car' | 'child'
    N[NUM=pl] -> 'dogs' | 'girls' | 'cars' | 'children'
    IV[TENSE=pres,  NUM=sg] -> 'disappears' | 'walks'
    TV[TENSE=pres, NUM=sg] -> 'sees' | 'likes'
    IV[TENSE=pres,  NUM=pl] -> 'disappear' | 'walk'
    TV[TENSE=pres, NUM=pl] -> 'see' | 'like'
    IV[TENSE=past] -> 'disappeared' | 'walked'
    TV[TENSE=past] -> 'saw' | 'liked'

Assuming we have saved feat0cfg as a file named
``'feat0.fcfg'``, the function ``parse.load_parser`` allows us to
read the grammar into NLTK, ready for use in parsing.


    >>> cp = parse.load_parser('grammars/book_grammars/feat0.fcfg', trace=1)
    >>> sent = 'Kim likes children'
    >>> tokens = sent.split()
    >>> tokens
    ['Kim', 'likes', 'children']
    >>> trees = cp.parse(tokens)
    |.Kim .like.chil.|
    |[----]    .    .| [0:1] 'Kim'
    |.    [----]    .| [1:2] 'likes'
    |.    .    [----]| [2:3] 'children'
    |[----]    .    .| [0:1] PropN[NUM='sg'] -> 'Kim' *
    |[----]    .    .| [0:1] NP[NUM='sg'] -> PropN[NUM='sg'] *
    |[---->    .    .| [0:1] S[] -> NP[NUM=?n] * VP[NUM=?n] {?n: 'sg'}
    |.    [----]    .| [1:2] TV[NUM='sg', TENSE='pres'] -> 'likes' *
    |.    [---->    .| [1:2] VP[NUM=?n, TENSE=?t] -> TV[NUM=?n, TENSE=?t] * NP[] {?n: 'sg', ?t: 'pres'}
    |.    .    [----]| [2:3] N[NUM='pl'] -> 'children' *
    |.    .    [----]| [2:3] NP[NUM='pl'] -> N[NUM='pl'] *
    |.    .    [---->| [2:3] S[] -> NP[NUM=?n] * VP[NUM=?n] {?n: 'pl'}
    |.    [---------]| [1:3] VP[NUM='sg', TENSE='pres'] -> TV[NUM='sg', TENSE='pres'] NP[] *
    |[==============]| [0:3] S[] -> NP[NUM='sg'] VP[NUM='sg'] *
    >>> for tree in trees: print(tree)
    (S[]
      (NP[NUM='sg'] (PropN[NUM='sg'] Kim))
      (VP[NUM='sg', TENSE='pres']
        (TV[NUM='sg', TENSE='pres'] likes)
        (NP[NUM='pl'] (N[NUM='pl'] children))))

The parser works directly with
the underspecified productions given by the grammar. That is, the
Predictor rule does not attempt to compile out all admissible feature
combinations before trying to expand the non-terminals on the left hand
side of a production. However, when the Scanner matches an input word
against a lexical production that has been predicted, the new edge will
typically contain fully specified features; e.g., the edge
[PropN[`num`:feat: = `sg`:fval:] |rarr| 'Kim', (0, 1)]. Recall from
Chapter 8 that the Fundamental (or Completer) Rule in
standard CFGs is used to combine an incomplete edge that's expecting a
nonterminal *B* with a following, complete edge whose left hand side
matches *B*. In our current setting, rather than checking for a
complete match, we test whether the expected category *B* will
unify with the left hand side *B'* of a following complete
edge. We will explain in more detail in Section 9.2 how
unification works; for the moment, it is enough to know that as a
result of unification, any variable values of features in *B* will be
instantiated by constant values in the corresponding feature structure
in *B'*, and these instantiated values will be used in the new edge
added by the Completer. This instantiation can be seen, for example,
in the edge
[NP [`num`:feat:\ =\ `sg`:fval:] |rarr| PropN[`num`:feat:\ =\ `sg`:fval:] |dot|, (0, 1)]
in Example 9.2, where the feature `num`:feat: has been assigned the value `sg`:fval:.

Feature structures in NLTK are ... Atomic feature values can be strings or
integers.

    >>> fs1 = nltk.FeatStruct(TENSE='past', NUM='sg')
    >>> print(fs1)
    [ NUM   = 'sg'   ]
    [ TENSE = 'past' ]

We can think of a feature structure as being like a Python dictionary,
and access its values by indexing in the usual way.

    >>> fs1 = nltk.FeatStruct(PER=3, NUM='pl', GND='fem')
    >>> print(fs1['GND'])
    fem

We can also define feature structures which have complex values, as
discussed earlier.

    >>> fs2 = nltk.FeatStruct(POS='N', AGR=fs1)
    >>> print(fs2)
    [       [ GND = 'fem' ] ]
    [ AGR = [ NUM = 'pl'  ] ]
    [       [ PER = 3     ] ]
    [                       ]
    [ POS = 'N'             ]
    >>> print(fs2['AGR'])
    [ GND = 'fem' ]
    [ NUM = 'pl'  ]
    [ PER = 3     ]
    >>> print(fs2['AGR']['PER'])
    3

Feature structures can also be constructed using the ``parse()``
method of the ``nltk.FeatStruct`` class. Note that in this case, atomic
feature values do not need to be enclosed in quotes.

    >>> f1 = nltk.FeatStruct("[NUMBER = sg]")
    >>> f2 = nltk.FeatStruct("[PERSON = 3]")
    >>> print(nltk.unify(f1, f2))
    [ NUMBER = 'sg' ]
    [ PERSON = 3    ]

    >>> f1 = nltk.FeatStruct("[A = [B = b, D = d]]")
    >>> f2 = nltk.FeatStruct("[A = [C = c, D = d]]")
    >>> print(nltk.unify(f1, f2))
    [     [ B = 'b' ] ]
    [ A = [ C = 'c' ] ]
    [     [ D = 'd' ] ]


Feature Structures as Graphs
----------------------------

Feature structures are not inherently tied to linguistic objects; they are
general purpose structures for representing knowledge. For example, we
could encode information about a person in a feature structure:

    >>> person01 = nltk.FeatStruct("[NAME=Lee, TELNO='01 27 86 42 96',AGE=33]")
    >>> print(person01)
    [ AGE   = 33               ]
    [ NAME  = 'Lee'            ]
    [ TELNO = '01 27 86 42 96' ]

There are a number of notations for representing reentrancy in
matrix-style representations of feature structures. In NLTK, we adopt
the following convention: the first occurrence of a shared feature structure
is prefixed with an integer in parentheses, such as ``(1)``, and any
subsequent reference to that structure uses the notation
``->(1)``, as shown below.


    >>> fs = nltk.FeatStruct("""[NAME=Lee, ADDRESS=(1)[NUMBER=74, STREET='rue Pascal'],
    ...                               SPOUSE=[NAME=Kim, ADDRESS->(1)]]""")
    >>> print(fs)
    [ ADDRESS = (1) [ NUMBER = 74           ] ]
    [               [ STREET = 'rue Pascal' ] ]
    [                                         ]
    [ NAME    = 'Lee'                         ]
    [                                         ]
    [ SPOUSE  = [ ADDRESS -> (1)  ]           ]
    [           [ NAME    = 'Kim' ]           ]

There can be any number of tags within a single feature structure.

    >>> fs3 = nltk.FeatStruct("[A=(1)[B=b], C=(2)[], D->(1), E->(2)]")
    >>> print(fs3)
    [ A = (1) [ B = 'b' ] ]
    [                     ]
    [ C = (2) []          ]
    [                     ]
    [ D -> (1)            ]
    [ E -> (2)            ]
    >>> fs1 = nltk.FeatStruct(NUMBER=74, STREET='rue Pascal')
    >>> fs2 = nltk.FeatStruct(CITY='Paris')
    >>> print(nltk.unify(fs1, fs2))
    [ CITY   = 'Paris'      ]
    [ NUMBER = 74           ]
    [ STREET = 'rue Pascal' ]

Unification is symmetric:

    >>> nltk.unify(fs1, fs2) == nltk.unify(fs2, fs1)
    True

Unification is commutative:

    >>> fs3 = nltk.FeatStruct(TELNO='01 27 86 42 96')
    >>> nltk.unify(nltk.unify(fs1, fs2), fs3) == nltk.unify(fs1, nltk.unify(fs2, fs3))
    True

Unification between *FS*:math:`_0` and *FS*:math:`_1` will fail if the
two feature structures share a path |pi|,
but the value of |pi| in *FS*:math:`_0` is a distinct
atom from the value of |pi| in *FS*:math:`_1`. In NLTK,
this is implemented by setting the result of unification to be
``None``.

    >>> fs0 = nltk.FeatStruct(A='a')
    >>> fs1 = nltk.FeatStruct(A='b')
    >>> print(nltk.unify(fs0, fs1))
    None

Now, if we look at how unification interacts with structure-sharing,
things become really interesting.



    >>> fs0 = nltk.FeatStruct("""[NAME=Lee,
    ...                                ADDRESS=[NUMBER=74,
    ...                                         STREET='rue Pascal'],
    ...                                SPOUSE= [NAME=Kim,
    ...                                         ADDRESS=[NUMBER=74,
    ...                                                  STREET='rue Pascal']]]""")
    >>> print(fs0)
    [ ADDRESS = [ NUMBER = 74           ]               ]
    [           [ STREET = 'rue Pascal' ]               ]
    [                                                   ]
    [ NAME    = 'Lee'                                   ]
    [                                                   ]
    [           [ ADDRESS = [ NUMBER = 74           ] ] ]
    [ SPOUSE  = [           [ STREET = 'rue Pascal' ] ] ]
    [           [                                     ] ]
    [           [ NAME    = 'Kim'                     ] ]


    >>> fs1 = nltk.FeatStruct("[SPOUSE=[ADDRESS=[CITY=Paris]]]")
    >>> print(nltk.unify(fs0, fs1))
    [ ADDRESS = [ NUMBER = 74           ]               ]
    [           [ STREET = 'rue Pascal' ]               ]
    [                                                   ]
    [ NAME    = 'Lee'                                   ]
    [                                                   ]
    [           [           [ CITY   = 'Paris'      ] ] ]
    [           [ ADDRESS = [ NUMBER = 74           ] ] ]
    [ SPOUSE  = [           [ STREET = 'rue Pascal' ] ] ]
    [           [                                     ] ]
    [           [ NAME    = 'Kim'                     ] ]

    >>> fs2 = nltk.FeatStruct("""[NAME=Lee, ADDRESS=(1)[NUMBER=74, STREET='rue Pascal'],
    ...                                SPOUSE=[NAME=Kim, ADDRESS->(1)]]""")


    >>> print(fs2)
    [ ADDRESS = (1) [ NUMBER = 74           ] ]
    [               [ STREET = 'rue Pascal' ] ]
    [                                         ]
    [ NAME    = 'Lee'                         ]
    [                                         ]
    [ SPOUSE  = [ ADDRESS -> (1)  ]           ]
    [           [ NAME    = 'Kim' ]           ]


    >>> print(nltk.unify(fs2, fs1))
    [               [ CITY   = 'Paris'      ] ]
    [ ADDRESS = (1) [ NUMBER = 74           ] ]
    [               [ STREET = 'rue Pascal' ] ]
    [                                         ]
    [ NAME    = 'Lee'                         ]
    [                                         ]
    [ SPOUSE  = [ ADDRESS -> (1)  ]           ]
    [           [ NAME    = 'Kim' ]           ]


    >>> fs1 = nltk.FeatStruct("[ADDRESS1=[NUMBER=74, STREET='rue Pascal']]")
    >>> fs2 = nltk.FeatStruct("[ADDRESS1=?x, ADDRESS2=?x]")
    >>> print(fs2)
    [ ADDRESS1 = ?x ]
    [ ADDRESS2 = ?x ]
    >>> print(nltk.unify(fs1, fs2))
    [ ADDRESS1 = (1) [ NUMBER = 74           ] ]
    [                [ STREET = 'rue Pascal' ] ]
    [                                          ]
    [ ADDRESS2 -> (1)                          ]




    >>> sent = 'who do you claim that you like'
    >>> tokens = sent.split()
    >>> cp = parse.load_parser('grammars/book_grammars/feat1.fcfg', trace=1)
    >>> trees = cp.parse(tokens)
    |.w.d.y.c.t.y.l.|
    |[-] . . . . . .| [0:1] 'who'
    |. [-] . . . . .| [1:2] 'do'
    |. . [-] . . . .| [2:3] 'you'
    |. . . [-] . . .| [3:4] 'claim'
    |. . . . [-] . .| [4:5] 'that'
    |. . . . . [-] .| [5:6] 'you'
    |. . . . . . [-]| [6:7] 'like'
    |# . . . . . . .| [0:0] NP[]/NP[] -> *
    |. # . . . . . .| [1:1] NP[]/NP[] -> *
    |. . # . . . . .| [2:2] NP[]/NP[] -> *
    |. . . # . . . .| [3:3] NP[]/NP[] -> *
    |. . . . # . . .| [4:4] NP[]/NP[] -> *
    |. . . . . # . .| [5:5] NP[]/NP[] -> *
    |. . . . . . # .| [6:6] NP[]/NP[] -> *
    |. . . . . . . #| [7:7] NP[]/NP[] -> *
    |[-] . . . . . .| [0:1] NP[+WH] -> 'who' *
    |[-> . . . . . .| [0:1] S[-INV] -> NP[] * VP[] {}
    |[-> . . . . . .| [0:1] S[-INV]/?x[] -> NP[] * VP[]/?x[] {}
    |[-> . . . . . .| [0:1] S[-INV] -> NP[] * S[]/NP[] {}
    |. [-] . . . . .| [1:2] V[+AUX] -> 'do' *
    |. [-> . . . . .| [1:2] S[+INV] -> V[+AUX] * NP[] VP[] {}
    |. [-> . . . . .| [1:2] S[+INV]/?x[] -> V[+AUX] * NP[] VP[]/?x[] {}
    |. [-> . . . . .| [1:2] VP[] -> V[+AUX] * VP[] {}
    |. [-> . . . . .| [1:2] VP[]/?x[] -> V[+AUX] * VP[]/?x[] {}
    |. . [-] . . . .| [2:3] NP[-WH] -> 'you' *
    |. . [-> . . . .| [2:3] S[-INV] -> NP[] * VP[] {}
    |. . [-> . . . .| [2:3] S[-INV]/?x[] -> NP[] * VP[]/?x[] {}
    |. . [-> . . . .| [2:3] S[-INV] -> NP[] * S[]/NP[] {}
    |. [---> . . . .| [1:3] S[+INV] -> V[+AUX] NP[] * VP[] {}
    |. [---> . . . .| [1:3] S[+INV]/?x[] -> V[+AUX] NP[] * VP[]/?x[] {}
    |. . . [-] . . .| [3:4] V[-AUX, SUBCAT='clause'] -> 'claim' *
    |. . . [-> . . .| [3:4] VP[] -> V[-AUX, SUBCAT='clause'] * SBar[] {}
    |. . . [-> . . .| [3:4] VP[]/?x[] -> V[-AUX, SUBCAT='clause'] * SBar[]/?x[] {}
    |. . . . [-] . .| [4:5] Comp[] -> 'that' *
    |. . . . [-> . .| [4:5] SBar[] -> Comp[] * S[-INV] {}
    |. . . . [-> . .| [4:5] SBar[]/?x[] -> Comp[] * S[-INV]/?x[] {}
    |. . . . . [-] .| [5:6] NP[-WH] -> 'you' *
    |. . . . . [-> .| [5:6] S[-INV] -> NP[] * VP[] {}
    |. . . . . [-> .| [5:6] S[-INV]/?x[] -> NP[] * VP[]/?x[] {}
    |. . . . . [-> .| [5:6] S[-INV] -> NP[] * S[]/NP[] {}
    |. . . . . . [-]| [6:7] V[-AUX, SUBCAT='trans'] -> 'like' *
    |. . . . . . [->| [6:7] VP[] -> V[-AUX, SUBCAT='trans'] * NP[] {}
    |. . . . . . [->| [6:7] VP[]/?x[] -> V[-AUX, SUBCAT='trans'] * NP[]/?x[] {}
    |. . . . . . [-]| [6:7] VP[]/NP[] -> V[-AUX, SUBCAT='trans'] NP[]/NP[] *
    |. . . . . [---]| [5:7] S[-INV]/NP[] -> NP[] VP[]/NP[] *
    |. . . . [-----]| [4:7] SBar[]/NP[] -> Comp[] S[-INV]/NP[] *
    |. . . [-------]| [3:7] VP[]/NP[] -> V[-AUX, SUBCAT='clause'] SBar[]/NP[] *
    |. . [---------]| [2:7] S[-INV]/NP[] -> NP[] VP[]/NP[] *
    |. [-----------]| [1:7] S[+INV]/NP[] -> V[+AUX] NP[] VP[]/NP[] *
    |[=============]| [0:7] S[-INV] -> NP[] S[]/NP[] *

    >>> trees = list(trees)
    >>> for tree in trees: print(tree)
    (S[-INV]
      (NP[+WH] who)
      (S[+INV]/NP[]
        (V[+AUX] do)
        (NP[-WH] you)
        (VP[]/NP[]
          (V[-AUX, SUBCAT='clause'] claim)
          (SBar[]/NP[]
            (Comp[] that)
            (S[-INV]/NP[]
              (NP[-WH] you)
              (VP[]/NP[] (V[-AUX, SUBCAT='trans'] like) (NP[]/NP[] )))))))

A different parser should give the same parse trees, but perhaps in a different order:

    >>> cp2 = parse.load_parser('grammars/book_grammars/feat1.fcfg', trace=1,
    ...                         parser=parse.FeatureEarleyChartParser)
    >>> trees2 = cp2.parse(tokens)
    |.w.d.y.c.t.y.l.|
    |[-] . . . . . .| [0:1] 'who'
    |. [-] . . . . .| [1:2] 'do'
    |. . [-] . . . .| [2:3] 'you'
    |. . . [-] . . .| [3:4] 'claim'
    |. . . . [-] . .| [4:5] 'that'
    |. . . . . [-] .| [5:6] 'you'
    |. . . . . . [-]| [6:7] 'like'
    |> . . . . . . .| [0:0] S[-INV] -> * NP[] VP[] {}
    |> . . . . . . .| [0:0] S[-INV]/?x[] -> * NP[] VP[]/?x[] {}
    |> . . . . . . .| [0:0] S[-INV] -> * NP[] S[]/NP[] {}
    |> . . . . . . .| [0:0] S[-INV] -> * Adv[+NEG] S[+INV] {}
    |> . . . . . . .| [0:0] S[+INV] -> * V[+AUX] NP[] VP[] {}
    |> . . . . . . .| [0:0] S[+INV]/?x[] -> * V[+AUX] NP[] VP[]/?x[] {}
    |> . . . . . . .| [0:0] NP[+WH] -> * 'who' {}
    |[-] . . . . . .| [0:1] NP[+WH] -> 'who' *
    |[-> . . . . . .| [0:1] S[-INV] -> NP[] * VP[] {}
    |[-> . . . . . .| [0:1] S[-INV]/?x[] -> NP[] * VP[]/?x[] {}
    |[-> . . . . . .| [0:1] S[-INV] -> NP[] * S[]/NP[] {}
    |. > . . . . . .| [1:1] S[-INV]/?x[] -> * NP[] VP[]/?x[] {}
    |. > . . . . . .| [1:1] S[+INV]/?x[] -> * V[+AUX] NP[] VP[]/?x[] {}
    |. > . . . . . .| [1:1] V[+AUX] -> * 'do' {}
    |. > . . . . . .| [1:1] VP[]/?x[] -> * V[-AUX, SUBCAT='trans'] NP[]/?x[] {}
    |. > . . . . . .| [1:1] VP[]/?x[] -> * V[-AUX, SUBCAT='clause'] SBar[]/?x[] {}
    |. > . . . . . .| [1:1] VP[]/?x[] -> * V[+AUX] VP[]/?x[] {}
    |. > . . . . . .| [1:1] VP[] -> * V[-AUX, SUBCAT='intrans'] {}
    |. > . . . . . .| [1:1] VP[] -> * V[-AUX, SUBCAT='trans'] NP[] {}
    |. > . . . . . .| [1:1] VP[] -> * V[-AUX, SUBCAT='clause'] SBar[] {}
    |. > . . . . . .| [1:1] VP[] -> * V[+AUX] VP[] {}
    |. [-] . . . . .| [1:2] V[+AUX] -> 'do' *
    |. [-> . . . . .| [1:2] S[+INV]/?x[] -> V[+AUX] * NP[] VP[]/?x[] {}
    |. [-> . . . . .| [1:2] VP[]/?x[] -> V[+AUX] * VP[]/?x[] {}
    |. [-> . . . . .| [1:2] VP[] -> V[+AUX] * VP[] {}
    |. . > . . . . .| [2:2] VP[] -> * V[-AUX, SUBCAT='intrans'] {}
    |. . > . . . . .| [2:2] VP[] -> * V[-AUX, SUBCAT='trans'] NP[] {}
    |. . > . . . . .| [2:2] VP[] -> * V[-AUX, SUBCAT='clause'] SBar[] {}
    |. . > . . . . .| [2:2] VP[] -> * V[+AUX] VP[] {}
    |. . > . . . . .| [2:2] VP[]/?x[] -> * V[-AUX, SUBCAT='trans'] NP[]/?x[] {}
    |. . > . . . . .| [2:2] VP[]/?x[] -> * V[-AUX, SUBCAT='clause'] SBar[]/?x[] {}
    |. . > . . . . .| [2:2] VP[]/?x[] -> * V[+AUX] VP[]/?x[] {}
    |. . > . . . . .| [2:2] NP[-WH] -> * 'you' {}
    |. . [-] . . . .| [2:3] NP[-WH] -> 'you' *
    |. [---> . . . .| [1:3] S[+INV]/?x[] -> V[+AUX] NP[] * VP[]/?x[] {}
    |. . . > . . . .| [3:3] VP[]/?x[] -> * V[-AUX, SUBCAT='trans'] NP[]/?x[] {}
    |. . . > . . . .| [3:3] VP[]/?x[] -> * V[-AUX, SUBCAT='clause'] SBar[]/?x[] {}
    |. . . > . . . .| [3:3] VP[]/?x[] -> * V[+AUX] VP[]/?x[] {}
    |. . . > . . . .| [3:3] V[-AUX, SUBCAT='clause'] -> * 'claim' {}
    |. . . [-] . . .| [3:4] V[-AUX, SUBCAT='clause'] -> 'claim' *
    |. . . [-> . . .| [3:4] VP[]/?x[] -> V[-AUX, SUBCAT='clause'] * SBar[]/?x[] {}
    |. . . . > . . .| [4:4] SBar[]/?x[] -> * Comp[] S[-INV]/?x[] {}
    |. . . . > . . .| [4:4] Comp[] -> * 'that' {}
    |. . . . [-] . .| [4:5] Comp[] -> 'that' *
    |. . . . [-> . .| [4:5] SBar[]/?x[] -> Comp[] * S[-INV]/?x[] {}
    |. . . . . > . .| [5:5] S[-INV]/?x[] -> * NP[] VP[]/?x[] {}
    |. . . . . > . .| [5:5] NP[-WH] -> * 'you' {}
    |. . . . . [-] .| [5:6] NP[-WH] -> 'you' *
    |. . . . . [-> .| [5:6] S[-INV]/?x[] -> NP[] * VP[]/?x[] {}
    |. . . . . . > .| [6:6] VP[]/?x[] -> * V[-AUX, SUBCAT='trans'] NP[]/?x[] {}
    |. . . . . . > .| [6:6] VP[]/?x[] -> * V[-AUX, SUBCAT='clause'] SBar[]/?x[] {}
    |. . . . . . > .| [6:6] VP[]/?x[] -> * V[+AUX] VP[]/?x[] {}
    |. . . . . . > .| [6:6] V[-AUX, SUBCAT='trans'] -> * 'like' {}
    |. . . . . . [-]| [6:7] V[-AUX, SUBCAT='trans'] -> 'like' *
    |. . . . . . [->| [6:7] VP[]/?x[] -> V[-AUX, SUBCAT='trans'] * NP[]/?x[] {}
    |. . . . . . . #| [7:7] NP[]/NP[] -> *
    |. . . . . . [-]| [6:7] VP[]/NP[] -> V[-AUX, SUBCAT='trans'] NP[]/NP[] *
    |. . . . . [---]| [5:7] S[-INV]/NP[] -> NP[] VP[]/NP[] *
    |. . . . [-----]| [4:7] SBar[]/NP[] -> Comp[] S[-INV]/NP[] *
    |. . . [-------]| [3:7] VP[]/NP[] -> V[-AUX, SUBCAT='clause'] SBar[]/NP[] *
    |. [-----------]| [1:7] S[+INV]/NP[] -> V[+AUX] NP[] VP[]/NP[] *
    |[=============]| [0:7] S[-INV] -> NP[] S[]/NP[] *

    >>> sorted(trees) == sorted(trees2)
    True


Let's load a German grammar:

    >>> cp = parse.load_parser('grammars/book_grammars/german.fcfg', trace=0)
    >>> sent = 'die Katze sieht den Hund'
    >>> tokens = sent.split()
    >>> trees = cp.parse(tokens)
    >>> for tree in trees: print(tree)
    (S[]
      (NP[AGR=[GND='fem', NUM='sg', PER=3], CASE='nom']
        (Det[AGR=[GND='fem', NUM='sg', PER=3], CASE='nom'] die)
        (N[AGR=[GND='fem', NUM='sg', PER=3]] Katze))
      (VP[AGR=[NUM='sg', PER=3]]
        (TV[AGR=[NUM='sg', PER=3], OBJCASE='acc'] sieht)
        (NP[AGR=[GND='masc', NUM='sg', PER=3], CASE='acc']
          (Det[AGR=[GND='masc', NUM='sg', PER=3], CASE='acc'] den)
          (N[AGR=[GND='masc', NUM='sg', PER=3]] Hund))))

Grammar with Binding Operators
------------------------------
The bindop.fcfg grammar is a semantic grammar that uses lambda
calculus.  Each element has a core semantics, which is a single lambda
calculus expression; and a set of binding operators, which bind
variables.

In order to make the binding operators work right, they need to
instantiate their bound variable every time they are added to the
chart.  To do this, we use a special subclass of `Chart`, called
`InstantiateVarsChart`.

    >>> from nltk.parse.featurechart import InstantiateVarsChart
    >>> cp = parse.load_parser('grammars/sample_grammars/bindop.fcfg', trace=1,
    ...                        chart_class=InstantiateVarsChart)
    >>> print(cp.grammar())
    Grammar with 15 productions (start state = S[])
        S[SEM=[BO={?b1+?b2}, CORE=<?vp(?subj)>]] -> NP[SEM=[BO=?b1, CORE=?subj]] VP[SEM=[BO=?b2, CORE=?vp]]
        VP[SEM=[BO={?b1+?b2}, CORE=<?v(?obj)>]] -> TV[SEM=[BO=?b1, CORE=?v]] NP[SEM=[BO=?b2, CORE=?obj]]
        VP[SEM=?s] -> IV[SEM=?s]
        NP[SEM=[BO={?b1+?b2+{bo(?det(?n),@x)}}, CORE=<@x>]] -> Det[SEM=[BO=?b1, CORE=?det]] N[SEM=[BO=?b2, CORE=?n]]
        Det[SEM=[BO={/}, CORE=<\Q P.exists x.(Q(x) & P(x))>]] -> 'a'
        N[SEM=[BO={/}, CORE=<dog>]] -> 'dog'
        N[SEM=[BO={/}, CORE=<dog>]] -> 'cat'
        N[SEM=[BO={/}, CORE=<dog>]] -> 'mouse'
        IV[SEM=[BO={/}, CORE=<\x.bark(x)>]] -> 'barks'
        IV[SEM=[BO={/}, CORE=<\x.bark(x)>]] -> 'eats'
        IV[SEM=[BO={/}, CORE=<\x.bark(x)>]] -> 'walks'
        TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] -> 'feeds'
        TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] -> 'walks'
        NP[SEM=[BO={bo(\P.P(John),@x)}, CORE=<@x>]] -> 'john'
        NP[SEM=[BO={bo(\P.P(John),@x)}, CORE=<@x>]] -> 'alex'

A simple intransitive sentence:

    >>> from nltk.sem import logic
    >>> logic._counter._value = 100

    >>> trees = cp.parse('john barks'.split())
    |. john.barks.|
    |[-----]     .| [0:1] 'john'
    |.     [-----]| [1:2] 'barks'
    |[-----]     .| [0:1] NP[SEM=[BO={bo(\P.P(John),z101)}, CORE=<z101>]] -> 'john' *
    |[----->     .| [0:1] S[SEM=[BO={?b1+?b2}, CORE=<?vp(?subj)>]] -> NP[SEM=[BO=?b1, CORE=?subj]] * VP[SEM=[BO=?b2, CORE=?vp]] {?b1: {bo(\P.P(John),z2)}, ?subj: <IndividualVariableExpression z2>}
    |.     [-----]| [1:2] IV[SEM=[BO={/}, CORE=<\x.bark(x)>]] -> 'barks' *
    |.     [-----]| [1:2] VP[SEM=[BO={/}, CORE=<\x.bark(x)>]] -> IV[SEM=[BO={/}, CORE=<\x.bark(x)>]] *
    |[===========]| [0:2] S[SEM=[BO={bo(\P.P(John),z2)}, CORE=<bark(z2)>]] -> NP[SEM=[BO={bo(\P.P(John),z2)}, CORE=<z2>]] VP[SEM=[BO={/}, CORE=<\x.bark(x)>]] *
    >>> for tree in trees: print(tree)
    (S[SEM=[BO={bo(\P.P(John),z2)}, CORE=<bark(z2)>]]
      (NP[SEM=[BO={bo(\P.P(John),z101)}, CORE=<z101>]] john)
      (VP[SEM=[BO={/}, CORE=<\x.bark(x)>]]
        (IV[SEM=[BO={/}, CORE=<\x.bark(x)>]] barks)))

A transitive sentence:

    >>> trees = cp.parse('john feeds a dog'.split())
    |.joh.fee. a .dog.|
    |[---]   .   .   .| [0:1] 'john'
    |.   [---]   .   .| [1:2] 'feeds'
    |.   .   [---]   .| [2:3] 'a'
    |.   .   .   [---]| [3:4] 'dog'
    |[---]   .   .   .| [0:1] NP[SEM=[BO={bo(\P.P(John),z102)}, CORE=<z102>]] -> 'john' *
    |[--->   .   .   .| [0:1] S[SEM=[BO={?b1+?b2}, CORE=<?vp(?subj)>]] -> NP[SEM=[BO=?b1, CORE=?subj]] * VP[SEM=[BO=?b2, CORE=?vp]] {?b1: {bo(\P.P(John),z2)}, ?subj: <IndividualVariableExpression z2>}
    |.   [---]   .   .| [1:2] TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] -> 'feeds' *
    |.   [--->   .   .| [1:2] VP[SEM=[BO={?b1+?b2}, CORE=<?v(?obj)>]] -> TV[SEM=[BO=?b1, CORE=?v]] * NP[SEM=[BO=?b2, CORE=?obj]] {?b1: {/}, ?v: <LambdaExpression \x y.feed(y,x)>}
    |.   .   [---]   .| [2:3] Det[SEM=[BO={/}, CORE=<\Q P.exists x.(Q(x) & P(x))>]] -> 'a' *
    |.   .   [--->   .| [2:3] NP[SEM=[BO={?b1+?b2+{bo(?det(?n),@x)}}, CORE=<@x>]] -> Det[SEM=[BO=?b1, CORE=?det]] * N[SEM=[BO=?b2, CORE=?n]] {?b1: {/}, ?det: <LambdaExpression \Q P.exists x.(Q(x) & P(x))>}
    |.   .   .   [---]| [3:4] N[SEM=[BO={/}, CORE=<dog>]] -> 'dog' *
    |.   .   [-------]| [2:4] NP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z103)}, CORE=<z103>]] -> Det[SEM=[BO={/}, CORE=<\Q P.exists x.(Q(x) & P(x))>]] N[SEM=[BO={/}, CORE=<dog>]] *
    |.   .   [------->| [2:4] S[SEM=[BO={?b1+?b2}, CORE=<?vp(?subj)>]] -> NP[SEM=[BO=?b1, CORE=?subj]] * VP[SEM=[BO=?b2, CORE=?vp]] {?b1: {bo(\P.exists x.(dog(x) & P(x)),z2)}, ?subj: <IndividualVariableExpression z2>}
    |.   [-----------]| [1:4] VP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z2)}, CORE=<\y.feed(y,z2)>]] -> TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] NP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z2)}, CORE=<z2>]] *
    |[===============]| [0:4] S[SEM=[BO={bo(\P.P(John),z2), bo(\P.exists x.(dog(x) & P(x)),z3)}, CORE=<feed(z2,z3)>]] -> NP[SEM=[BO={bo(\P.P(John),z2)}, CORE=<z2>]] VP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z3)}, CORE=<\y.feed(y,z3)>]] *

    >>> for tree in trees: print(tree)
    (S[SEM=[BO={bo(\P.P(John),z2), bo(\P.exists x.(dog(x) & P(x)),z3)}, CORE=<feed(z2,z3)>]]
      (NP[SEM=[BO={bo(\P.P(John),z102)}, CORE=<z102>]] john)
      (VP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z2)}, CORE=<\y.feed(y,z2)>]]
        (TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] feeds)
        (NP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z103)}, CORE=<z103>]]
          (Det[SEM=[BO={/}, CORE=<\Q P.exists x.(Q(x) & P(x))>]] a)
          (N[SEM=[BO={/}, CORE=<dog>]] dog))))

Turn down the verbosity:

    >>> cp = parse.load_parser('grammars/sample_grammars/bindop.fcfg', trace=0,
    ...                       chart_class=InstantiateVarsChart)

Reuse the same lexical item twice:

    >>> trees = cp.parse('john feeds john'.split())
    >>> for tree in trees: print(tree)
    (S[SEM=[BO={bo(\P.P(John),z2), bo(\P.P(John),z3)}, CORE=<feed(z2,z3)>]]
      (NP[SEM=[BO={bo(\P.P(John),z104)}, CORE=<z104>]] john)
      (VP[SEM=[BO={bo(\P.P(John),z2)}, CORE=<\y.feed(y,z2)>]]
        (TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] feeds)
        (NP[SEM=[BO={bo(\P.P(John),z105)}, CORE=<z105>]] john)))

    >>> trees = cp.parse('a dog feeds a dog'.split())
    >>> for tree in trees: print(tree)
    (S[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z2), bo(\P.exists x.(dog(x) & P(x)),z3)}, CORE=<feed(z2,z3)>]]
      (NP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z106)}, CORE=<z106>]]
        (Det[SEM=[BO={/}, CORE=<\Q P.exists x.(Q(x) & P(x))>]] a)
        (N[SEM=[BO={/}, CORE=<dog>]] dog))
      (VP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z2)}, CORE=<\y.feed(y,z2)>]]
        (TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] feeds)
        (NP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z107)}, CORE=<z107>]]
          (Det[SEM=[BO={/}, CORE=<\Q P.exists x.(Q(x) & P(x))>]] a)
          (N[SEM=[BO={/}, CORE=<dog>]] dog))))