Spaces:
Sleeping
Sleeping
File size: 9,363 Bytes
d916065 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
=======================
CHILDES Corpus Readers
=======================
Read the XML version of the CHILDES corpus.
Setup
=====
>>> from nltk.test.childes_fixt import setup_module
>>> setup_module()
How to use CHILDESCorpusReader
==============================
Read the CHILDESCorpusReader class and read the CHILDES corpus saved in
the nltk_data directory.
>>> import nltk
>>> from nltk.corpus.reader import CHILDESCorpusReader
>>> corpus_root = nltk.data.find('corpora/childes/data-xml/Eng-USA-MOR/')
Reading files in the Valian corpus (Valian, 1991).
>>> valian = CHILDESCorpusReader(corpus_root, 'Valian/.*.xml')
>>> valian.fileids()
['Valian/01a.xml', 'Valian/01b.xml', 'Valian/02a.xml', 'Valian/02b.xml',...
Count the number of files
>>> len(valian.fileids())
43
Printing properties of the corpus files.
>>> corpus_data = valian.corpus(valian.fileids())
>>> print(corpus_data[0]['Lang'])
eng
>>> for key in sorted(corpus_data[0].keys()):
... print(key, ": ", corpus_data[0][key])
Corpus : valian
Date : 1986-03-04
Id : 01a
Lang : eng
Version : 2.0.1
{http://www.w3.org/2001/XMLSchema-instance}schemaLocation : http://www.talkbank.org/ns/talkbank http://talkbank.org/software/talkbank.xsd
Printing information of participants of the corpus. The most common codes for
the participants are 'CHI' (target child), 'MOT' (mother), and 'INV' (investigator).
>>> corpus_participants = valian.participants(valian.fileids())
>>> for this_corpus_participants in corpus_participants[:2]:
... for key in sorted(this_corpus_participants.keys()):
... dct = this_corpus_participants[key]
... print(key, ": ", [(k, dct[k]) for k in sorted(dct.keys())])
CHI : [('age', 'P2Y1M3D'), ('group', 'normal'), ('id', 'CHI'), ('language', 'eng'), ('role', 'Target_Child'), ('sex', 'female')]
INV : [('id', 'INV'), ('language', 'eng'), ('role', 'Investigator')]
MOT : [('id', 'MOT'), ('language', 'eng'), ('role', 'Mother')]
CHI : [('age', 'P2Y1M12D'), ('group', 'normal'), ('id', 'CHI'), ('language', 'eng'), ('role', 'Target_Child'), ('sex', 'female')]
INV : [('id', 'INV'), ('language', 'eng'), ('role', 'Investigator')]
MOT : [('id', 'MOT'), ('language', 'eng'), ('role', 'Mother')]
printing words.
>>> valian.words('Valian/01a.xml')
['at', 'Parent', "Lastname's", 'house', 'with', 'Child', 'Lastname', ...
printing sentences.
>>> valian.sents('Valian/01a.xml')
[['at', 'Parent', "Lastname's", 'house', 'with', 'Child', 'Lastname',
'and', 'it', 'is', 'March', 'fourth', 'I', 'believe', 'and', 'when',
'was', "Parent's", 'birthday'], ["Child's"], ['oh', "I'm", 'sorry'],
["that's", 'okay'], ...
You can specify the participants with the argument *speaker*.
>>> valian.words('Valian/01a.xml',speaker=['INV'])
['at', 'Parent', "Lastname's", 'house', 'with', 'Child', 'Lastname', ...
>>> valian.words('Valian/01a.xml',speaker=['MOT'])
["Child's", "that's", 'okay', 'February', 'first', 'nineteen', ...
>>> valian.words('Valian/01a.xml',speaker=['CHI'])
['tape', 'it', 'up', 'and', 'two', 'tape', 'players', 'have',...
tagged_words() and tagged_sents() return the usual (word,pos) tuple lists.
POS tags in the CHILDES are automatically assigned by MOR and POST programs
(MacWhinney, 2000).
>>> valian.tagged_words('Valian/01a.xml')[:30]
[('at', 'prep'), ('Parent', 'n:prop'), ("Lastname's", 'n:prop'), ('house', 'n'),
('with', 'prep'), ('Child', 'n:prop'), ('Lastname', 'n:prop'), ('and', 'coord'),
('it', 'pro'), ('is', 'v:cop'), ('March', 'n:prop'), ('fourth', 'adj'),
('I', 'pro:sub'), ('believe', 'v'), ('and', 'coord'), ('when', 'adv:wh'),
('was', 'v:cop'), ("Parent's", 'n:prop'), ('birthday', 'n'), ("Child's", 'n:prop'),
('oh', 'co'), ("I'm", 'pro:sub'), ('sorry', 'adj'), ("that's", 'pro:dem'),
('okay', 'adj'), ('February', 'n:prop'), ('first', 'adj'),
('nineteen', 'det:num'), ('eighty', 'det:num'), ('four', 'det:num')]
>>> valian.tagged_sents('Valian/01a.xml')[:10]
[[('at', 'prep'), ('Parent', 'n:prop'), ("Lastname's", 'n:prop'), ('house', 'n'),
('with', 'prep'), ('Child', 'n:prop'), ('Lastname', 'n:prop'), ('and', 'coord'),
('it', 'pro'), ('is', 'v:cop'), ('March', 'n:prop'), ('fourth', 'adj'),
('I', 'pro:sub'), ('believe', 'v'), ('and', 'coord'), ('when', 'adv:wh'),
('was', 'v:cop'), ("Parent's", 'n:prop'), ('birthday', 'n')],
[("Child's", 'n:prop')], [('oh', 'co'), ("I'm", 'pro:sub'), ('sorry', 'adj')],
[("that's", 'pro:dem'), ('okay', 'adj')],
[('February', 'n:prop'), ('first', 'adj'), ('nineteen', 'det:num'),
('eighty', 'det:num'), ('four', 'det:num')],
[('great', 'adj')],
[('and', 'coord'), ("she's", 'pro:sub'), ('two', 'det:num'), ('years', 'n'), ('old', 'adj')],
[('correct', 'adj')],
[('okay', 'co')], [('she', 'pro:sub'), ('just', 'adv:int'), ('turned', 'part'), ('two', 'det:num'),
('a', 'det'), ('month', 'n'), ('ago', 'adv')]]
When the argument *stem* is true, the word stems (e.g., 'is' -> 'be-3PS') are
used instead of the original words.
>>> valian.words('Valian/01a.xml')[:30]
['at', 'Parent', "Lastname's", 'house', 'with', 'Child', 'Lastname', 'and', 'it', 'is', ...
>>> valian.words('Valian/01a.xml',stem=True)[:30]
['at', 'Parent', 'Lastname', 's', 'house', 'with', 'Child', 'Lastname', 'and', 'it', 'be-3S', ...
When the argument *replace* is true, the replaced words are used instead of
the original words.
>>> valian.words('Valian/01a.xml',speaker='CHI')[247]
'tikteat'
>>> valian.words('Valian/01a.xml',speaker='CHI',replace=True)[247]
'trick'
When the argument *relation* is true, the relational relationships in the
sentence are returned. See Sagae et al. (2010) for details of the relational
structure adopted in the CHILDES.
>>> valian.words('Valian/01a.xml',relation=True)[:10]
[[('at', 'prep', '1|0|ROOT'), ('Parent', 'n', '2|5|VOC'), ('Lastname', 'n', '3|5|MOD'), ('s', 'poss', '4|5|MOD'), ('house', 'n', '5|1|POBJ'), ('with', 'prep', '6|1|JCT'), ('Child', 'n', '7|8|NAME'), ('Lastname', 'n', '8|6|POBJ'), ('and', 'coord', '9|8|COORD'), ('it', 'pro', '10|11|SUBJ'), ('be-3S', 'v', '11|9|COMP'), ('March', 'n', '12|11|PRED'), ('fourth', 'adj', '13|12|MOD'), ('I', 'pro', '15|16|SUBJ'), ('believe', 'v', '16|14|ROOT'), ('and', 'coord', '18|17|ROOT'), ('when', 'adv', '19|20|PRED'), ('be-PAST', 'v', '20|18|COMP'), ('Parent', 'n', '21|23|MOD'), ('s', 'poss', '22|23|MOD'), ('birth', 'n', '23|20|SUBJ')], [('Child', 'n', '1|2|MOD'), ('s', 'poss', '2|0|ROOT')], [('oh', 'co', '1|4|COM'), ('I', 'pro', '3|4|SUBJ'), ('be', 'v', '4|0|ROOT'), ('sorry', 'adj', '5|4|PRED')], [('that', 'pro', '1|2|SUBJ'), ('be', 'v', '2|0|ROOT'), ('okay', 'adj', '3|2|PRED')], [('February', 'n', '1|6|VOC'), ('first', 'adj', '2|6|ENUM'), ('nineteen', 'det', '4|6|ENUM'), ('eighty', 'det', '5|6|ENUM'), ('four', 'det', '6|0|ROOT')], [('great', 'adj', '1|0|ROOT')], [('and', 'coord', '1|0|ROOT'), ('she', 'pro', '2|1|ROOT'), ('be', 'aux', '3|5|AUX'), ('two', 'det', '4|5|QUANT'), ('year-PL', 'n', '5|2|ROOT'), ('old', 'adj', '6|5|MOD')], [('correct', 'adj', '1|0|ROOT')], [('okay', 'co', '1|0|ROOT')], [('she', 'pro', '1|0|ROOT'), ('just', 'adv', '2|3|JCT'), ('turn-PERF', 'part', '3|1|XCOMP'), ('two', 'det', '4|6|QUANT'), ('a', 'det', '5|6|DET'), ('month', 'n', '6|3|OBJ'), ('ago', 'adv', '7|3|JCT')]]
Printing age. When the argument *month* is true, the age information in
the CHILDES format is converted into the number of months.
>>> valian.age()
['P2Y1M3D', 'P2Y1M12D', 'P1Y9M21D', 'P1Y9M28D', 'P2Y1M23D', ...
>>> valian.age('Valian/01a.xml')
['P2Y1M3D']
>>> valian.age('Valian/01a.xml',month=True)
[25]
Printing MLU. The criteria for the MLU computation is broadly based on
Brown (1973).
>>> valian.MLU()
[2.3574660633484..., 2.292682926829..., 3.492857142857..., 2.961783439490...,
2.0842696629213..., 3.169811320754..., 3.137404580152..., 3.0578034682080...,
4.090163934426..., 3.488372093023..., 2.8773584905660..., 3.4792899408284...,
4.0111940298507..., 3.456790123456..., 4.487603305785..., 4.007936507936...,
5.25, 5.154696132596..., ...]
>>> valian.MLU('Valian/01a.xml')
[2.35746606334...]
Basic stuff
==============================
Count the number of words and sentences of each file.
>>> valian = CHILDESCorpusReader(corpus_root, 'Valian/.*.xml')
>>> for this_file in valian.fileids()[:6]:
... print(valian.corpus(this_file)[0]['Corpus'], valian.corpus(this_file)[0]['Id'])
... print("num of words: %i" % len(valian.words(this_file)))
... print("num of sents: %i" % len(valian.sents(this_file)))
valian 01a
num of words: 3606
num of sents: 1027
valian 01b
num of words: 4376
num of sents: 1274
valian 02a
num of words: 2673
num of sents: 801
valian 02b
num of words: 5020
num of sents: 1583
valian 03a
num of words: 2743
num of sents: 988
valian 03b
num of words: 4409
num of sents: 1397
|