Spaces:
Sleeping
Sleeping
File size: 21,764 Bytes
d916065 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 |
# Natural Language Toolkit: vader
#
# Copyright (C) 2001-2023 NLTK Project
# Author: C.J. Hutto <[email protected]>
# Ewan Klein <[email protected]> (modifications)
# Pierpaolo Pantone <[email protected]> (modifications)
# George Berry <[email protected]> (modifications)
# Malavika Suresh <[email protected]> (modifications)
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
#
# Modifications to the original VADER code have been made in order to
# integrate it into NLTK. These have involved changes to
# ensure Python 3 compatibility, and refactoring to achieve greater modularity.
"""
If you use the VADER sentiment analysis tools, please cite:
Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for
Sentiment Analysis of Social Media Text. Eighth International Conference on
Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014.
"""
import math
import re
import string
from itertools import product
import nltk.data
from nltk.util import pairwise
class VaderConstants:
"""
A class to keep the Vader lists and constants.
"""
##Constants##
# (empirically derived mean sentiment intensity rating increase for booster words)
B_INCR = 0.293
B_DECR = -0.293
# (empirically derived mean sentiment intensity rating increase for using
# ALLCAPs to emphasize a word)
C_INCR = 0.733
N_SCALAR = -0.74
NEGATE = {
"aint",
"arent",
"cannot",
"cant",
"couldnt",
"darent",
"didnt",
"doesnt",
"ain't",
"aren't",
"can't",
"couldn't",
"daren't",
"didn't",
"doesn't",
"dont",
"hadnt",
"hasnt",
"havent",
"isnt",
"mightnt",
"mustnt",
"neither",
"don't",
"hadn't",
"hasn't",
"haven't",
"isn't",
"mightn't",
"mustn't",
"neednt",
"needn't",
"never",
"none",
"nope",
"nor",
"not",
"nothing",
"nowhere",
"oughtnt",
"shant",
"shouldnt",
"uhuh",
"wasnt",
"werent",
"oughtn't",
"shan't",
"shouldn't",
"uh-uh",
"wasn't",
"weren't",
"without",
"wont",
"wouldnt",
"won't",
"wouldn't",
"rarely",
"seldom",
"despite",
}
# booster/dampener 'intensifiers' or 'degree adverbs'
# https://en.wiktionary.org/wiki/Category:English_degree_adverbs
BOOSTER_DICT = {
"absolutely": B_INCR,
"amazingly": B_INCR,
"awfully": B_INCR,
"completely": B_INCR,
"considerably": B_INCR,
"decidedly": B_INCR,
"deeply": B_INCR,
"effing": B_INCR,
"enormously": B_INCR,
"entirely": B_INCR,
"especially": B_INCR,
"exceptionally": B_INCR,
"extremely": B_INCR,
"fabulously": B_INCR,
"flipping": B_INCR,
"flippin": B_INCR,
"fricking": B_INCR,
"frickin": B_INCR,
"frigging": B_INCR,
"friggin": B_INCR,
"fully": B_INCR,
"fucking": B_INCR,
"greatly": B_INCR,
"hella": B_INCR,
"highly": B_INCR,
"hugely": B_INCR,
"incredibly": B_INCR,
"intensely": B_INCR,
"majorly": B_INCR,
"more": B_INCR,
"most": B_INCR,
"particularly": B_INCR,
"purely": B_INCR,
"quite": B_INCR,
"really": B_INCR,
"remarkably": B_INCR,
"so": B_INCR,
"substantially": B_INCR,
"thoroughly": B_INCR,
"totally": B_INCR,
"tremendously": B_INCR,
"uber": B_INCR,
"unbelievably": B_INCR,
"unusually": B_INCR,
"utterly": B_INCR,
"very": B_INCR,
"almost": B_DECR,
"barely": B_DECR,
"hardly": B_DECR,
"just enough": B_DECR,
"kind of": B_DECR,
"kinda": B_DECR,
"kindof": B_DECR,
"kind-of": B_DECR,
"less": B_DECR,
"little": B_DECR,
"marginally": B_DECR,
"occasionally": B_DECR,
"partly": B_DECR,
"scarcely": B_DECR,
"slightly": B_DECR,
"somewhat": B_DECR,
"sort of": B_DECR,
"sorta": B_DECR,
"sortof": B_DECR,
"sort-of": B_DECR,
}
# check for special case idioms using a sentiment-laden keyword known to SAGE
SPECIAL_CASE_IDIOMS = {
"the shit": 3,
"the bomb": 3,
"bad ass": 1.5,
"yeah right": -2,
"cut the mustard": 2,
"kiss of death": -1.5,
"hand to mouth": -2,
}
# for removing punctuation
REGEX_REMOVE_PUNCTUATION = re.compile(f"[{re.escape(string.punctuation)}]")
PUNC_LIST = [
".",
"!",
"?",
",",
";",
":",
"-",
"'",
'"',
"!!",
"!!!",
"??",
"???",
"?!?",
"!?!",
"?!?!",
"!?!?",
]
def __init__(self):
pass
def negated(self, input_words, include_nt=True):
"""
Determine if input contains negation words
"""
neg_words = self.NEGATE
if any(word.lower() in neg_words for word in input_words):
return True
if include_nt:
if any("n't" in word.lower() for word in input_words):
return True
for first, second in pairwise(input_words):
if second.lower() == "least" and first.lower() != "at":
return True
return False
def normalize(self, score, alpha=15):
"""
Normalize the score to be between -1 and 1 using an alpha that
approximates the max expected value
"""
norm_score = score / math.sqrt((score * score) + alpha)
return norm_score
def scalar_inc_dec(self, word, valence, is_cap_diff):
"""
Check if the preceding words increase, decrease, or negate/nullify the
valence
"""
scalar = 0.0
word_lower = word.lower()
if word_lower in self.BOOSTER_DICT:
scalar = self.BOOSTER_DICT[word_lower]
if valence < 0:
scalar *= -1
# check if booster/dampener word is in ALLCAPS (while others aren't)
if word.isupper() and is_cap_diff:
if valence > 0:
scalar += self.C_INCR
else:
scalar -= self.C_INCR
return scalar
class SentiText:
"""
Identify sentiment-relevant string-level properties of input text.
"""
def __init__(self, text, punc_list, regex_remove_punctuation):
if not isinstance(text, str):
text = str(text.encode("utf-8"))
self.text = text
self.PUNC_LIST = punc_list
self.REGEX_REMOVE_PUNCTUATION = regex_remove_punctuation
self.words_and_emoticons = self._words_and_emoticons()
# doesn't separate words from
# adjacent punctuation (keeps emoticons & contractions)
self.is_cap_diff = self.allcap_differential(self.words_and_emoticons)
def _words_plus_punc(self):
"""
Returns mapping of form:
{
'cat,': 'cat',
',cat': 'cat',
}
"""
no_punc_text = self.REGEX_REMOVE_PUNCTUATION.sub("", self.text)
# removes punctuation (but loses emoticons & contractions)
words_only = no_punc_text.split()
# remove singletons
words_only = {w for w in words_only if len(w) > 1}
# the product gives ('cat', ',') and (',', 'cat')
punc_before = {"".join(p): p[1] for p in product(self.PUNC_LIST, words_only)}
punc_after = {"".join(p): p[0] for p in product(words_only, self.PUNC_LIST)}
words_punc_dict = punc_before
words_punc_dict.update(punc_after)
return words_punc_dict
def _words_and_emoticons(self):
"""
Removes leading and trailing puncutation
Leaves contractions and most emoticons
Does not preserve punc-plus-letter emoticons (e.g. :D)
"""
wes = self.text.split()
words_punc_dict = self._words_plus_punc()
wes = [we for we in wes if len(we) > 1]
for i, we in enumerate(wes):
if we in words_punc_dict:
wes[i] = words_punc_dict[we]
return wes
def allcap_differential(self, words):
"""
Check whether just some words in the input are ALL CAPS
:param list words: The words to inspect
:returns: `True` if some but not all items in `words` are ALL CAPS
"""
is_different = False
allcap_words = 0
for word in words:
if word.isupper():
allcap_words += 1
cap_differential = len(words) - allcap_words
if 0 < cap_differential < len(words):
is_different = True
return is_different
class SentimentIntensityAnalyzer:
"""
Give a sentiment intensity score to sentences.
"""
def __init__(
self,
lexicon_file="sentiment/vader_lexicon.zip/vader_lexicon/vader_lexicon.txt",
):
self.lexicon_file = nltk.data.load(lexicon_file)
self.lexicon = self.make_lex_dict()
self.constants = VaderConstants()
def make_lex_dict(self):
"""
Convert lexicon file to a dictionary
"""
lex_dict = {}
for line in self.lexicon_file.split("\n"):
(word, measure) = line.strip().split("\t")[0:2]
lex_dict[word] = float(measure)
return lex_dict
def polarity_scores(self, text):
"""
Return a float for sentiment strength based on the input text.
Positive values are positive valence, negative value are negative
valence.
:note: Hashtags are not taken into consideration (e.g. #BAD is neutral). If you
are interested in processing the text in the hashtags too, then we recommend
preprocessing your data to remove the #, after which the hashtag text may be
matched as if it was a normal word in the sentence.
"""
# text, words_and_emoticons, is_cap_diff = self.preprocess(text)
sentitext = SentiText(
text, self.constants.PUNC_LIST, self.constants.REGEX_REMOVE_PUNCTUATION
)
sentiments = []
words_and_emoticons = sentitext.words_and_emoticons
for item in words_and_emoticons:
valence = 0
i = words_and_emoticons.index(item)
if (
i < len(words_and_emoticons) - 1
and item.lower() == "kind"
and words_and_emoticons[i + 1].lower() == "of"
) or item.lower() in self.constants.BOOSTER_DICT:
sentiments.append(valence)
continue
sentiments = self.sentiment_valence(valence, sentitext, item, i, sentiments)
sentiments = self._but_check(words_and_emoticons, sentiments)
return self.score_valence(sentiments, text)
def sentiment_valence(self, valence, sentitext, item, i, sentiments):
is_cap_diff = sentitext.is_cap_diff
words_and_emoticons = sentitext.words_and_emoticons
item_lowercase = item.lower()
if item_lowercase in self.lexicon:
# get the sentiment valence
valence = self.lexicon[item_lowercase]
# check if sentiment laden word is in ALL CAPS (while others aren't)
if item.isupper() and is_cap_diff:
if valence > 0:
valence += self.constants.C_INCR
else:
valence -= self.constants.C_INCR
for start_i in range(0, 3):
if (
i > start_i
and words_and_emoticons[i - (start_i + 1)].lower()
not in self.lexicon
):
# dampen the scalar modifier of preceding words and emoticons
# (excluding the ones that immediately preceed the item) based
# on their distance from the current item.
s = self.constants.scalar_inc_dec(
words_and_emoticons[i - (start_i + 1)], valence, is_cap_diff
)
if start_i == 1 and s != 0:
s = s * 0.95
if start_i == 2 and s != 0:
s = s * 0.9
valence = valence + s
valence = self._never_check(
valence, words_and_emoticons, start_i, i
)
if start_i == 2:
valence = self._idioms_check(valence, words_and_emoticons, i)
# future work: consider other sentiment-laden idioms
# other_idioms =
# {"back handed": -2, "blow smoke": -2, "blowing smoke": -2,
# "upper hand": 1, "break a leg": 2,
# "cooking with gas": 2, "in the black": 2, "in the red": -2,
# "on the ball": 2,"under the weather": -2}
valence = self._least_check(valence, words_and_emoticons, i)
sentiments.append(valence)
return sentiments
def _least_check(self, valence, words_and_emoticons, i):
# check for negation case using "least"
if (
i > 1
and words_and_emoticons[i - 1].lower() not in self.lexicon
and words_and_emoticons[i - 1].lower() == "least"
):
if (
words_and_emoticons[i - 2].lower() != "at"
and words_and_emoticons[i - 2].lower() != "very"
):
valence = valence * self.constants.N_SCALAR
elif (
i > 0
and words_and_emoticons[i - 1].lower() not in self.lexicon
and words_and_emoticons[i - 1].lower() == "least"
):
valence = valence * self.constants.N_SCALAR
return valence
def _but_check(self, words_and_emoticons, sentiments):
words_and_emoticons = [w_e.lower() for w_e in words_and_emoticons]
but = {"but"} & set(words_and_emoticons)
if but:
bi = words_and_emoticons.index(next(iter(but)))
for sidx, sentiment in enumerate(sentiments):
if sidx < bi:
sentiments[sidx] = sentiment * 0.5
elif sidx > bi:
sentiments[sidx] = sentiment * 1.5
return sentiments
def _idioms_check(self, valence, words_and_emoticons, i):
onezero = f"{words_and_emoticons[i - 1]} {words_and_emoticons[i]}"
twoonezero = "{} {} {}".format(
words_and_emoticons[i - 2],
words_and_emoticons[i - 1],
words_and_emoticons[i],
)
twoone = f"{words_and_emoticons[i - 2]} {words_and_emoticons[i - 1]}"
threetwoone = "{} {} {}".format(
words_and_emoticons[i - 3],
words_and_emoticons[i - 2],
words_and_emoticons[i - 1],
)
threetwo = "{} {}".format(
words_and_emoticons[i - 3], words_and_emoticons[i - 2]
)
sequences = [onezero, twoonezero, twoone, threetwoone, threetwo]
for seq in sequences:
if seq in self.constants.SPECIAL_CASE_IDIOMS:
valence = self.constants.SPECIAL_CASE_IDIOMS[seq]
break
if len(words_and_emoticons) - 1 > i:
zeroone = f"{words_and_emoticons[i]} {words_and_emoticons[i + 1]}"
if zeroone in self.constants.SPECIAL_CASE_IDIOMS:
valence = self.constants.SPECIAL_CASE_IDIOMS[zeroone]
if len(words_and_emoticons) - 1 > i + 1:
zeroonetwo = "{} {} {}".format(
words_and_emoticons[i],
words_and_emoticons[i + 1],
words_and_emoticons[i + 2],
)
if zeroonetwo in self.constants.SPECIAL_CASE_IDIOMS:
valence = self.constants.SPECIAL_CASE_IDIOMS[zeroonetwo]
# check for booster/dampener bi-grams such as 'sort of' or 'kind of'
if (
threetwo in self.constants.BOOSTER_DICT
or twoone in self.constants.BOOSTER_DICT
):
valence = valence + self.constants.B_DECR
return valence
def _never_check(self, valence, words_and_emoticons, start_i, i):
if start_i == 0:
if self.constants.negated([words_and_emoticons[i - 1]]):
valence = valence * self.constants.N_SCALAR
if start_i == 1:
if words_and_emoticons[i - 2] == "never" and (
words_and_emoticons[i - 1] == "so"
or words_and_emoticons[i - 1] == "this"
):
valence = valence * 1.5
elif self.constants.negated([words_and_emoticons[i - (start_i + 1)]]):
valence = valence * self.constants.N_SCALAR
if start_i == 2:
if (
words_and_emoticons[i - 3] == "never"
and (
words_and_emoticons[i - 2] == "so"
or words_and_emoticons[i - 2] == "this"
)
or (
words_and_emoticons[i - 1] == "so"
or words_and_emoticons[i - 1] == "this"
)
):
valence = valence * 1.25
elif self.constants.negated([words_and_emoticons[i - (start_i + 1)]]):
valence = valence * self.constants.N_SCALAR
return valence
def _punctuation_emphasis(self, sum_s, text):
# add emphasis from exclamation points and question marks
ep_amplifier = self._amplify_ep(text)
qm_amplifier = self._amplify_qm(text)
punct_emph_amplifier = ep_amplifier + qm_amplifier
return punct_emph_amplifier
def _amplify_ep(self, text):
# check for added emphasis resulting from exclamation points (up to 4 of them)
ep_count = text.count("!")
if ep_count > 4:
ep_count = 4
# (empirically derived mean sentiment intensity rating increase for
# exclamation points)
ep_amplifier = ep_count * 0.292
return ep_amplifier
def _amplify_qm(self, text):
# check for added emphasis resulting from question marks (2 or 3+)
qm_count = text.count("?")
qm_amplifier = 0
if qm_count > 1:
if qm_count <= 3:
# (empirically derived mean sentiment intensity rating increase for
# question marks)
qm_amplifier = qm_count * 0.18
else:
qm_amplifier = 0.96
return qm_amplifier
def _sift_sentiment_scores(self, sentiments):
# want separate positive versus negative sentiment scores
pos_sum = 0.0
neg_sum = 0.0
neu_count = 0
for sentiment_score in sentiments:
if sentiment_score > 0:
pos_sum += (
float(sentiment_score) + 1
) # compensates for neutral words that are counted as 1
if sentiment_score < 0:
neg_sum += (
float(sentiment_score) - 1
) # when used with math.fabs(), compensates for neutrals
if sentiment_score == 0:
neu_count += 1
return pos_sum, neg_sum, neu_count
def score_valence(self, sentiments, text):
if sentiments:
sum_s = float(sum(sentiments))
# compute and add emphasis from punctuation in text
punct_emph_amplifier = self._punctuation_emphasis(sum_s, text)
if sum_s > 0:
sum_s += punct_emph_amplifier
elif sum_s < 0:
sum_s -= punct_emph_amplifier
compound = self.constants.normalize(sum_s)
# discriminate between positive, negative and neutral sentiment scores
pos_sum, neg_sum, neu_count = self._sift_sentiment_scores(sentiments)
if pos_sum > math.fabs(neg_sum):
pos_sum += punct_emph_amplifier
elif pos_sum < math.fabs(neg_sum):
neg_sum -= punct_emph_amplifier
total = pos_sum + math.fabs(neg_sum) + neu_count
pos = math.fabs(pos_sum / total)
neg = math.fabs(neg_sum / total)
neu = math.fabs(neu_count / total)
else:
compound = 0.0
pos = 0.0
neg = 0.0
neu = 0.0
sentiment_dict = {
"neg": round(neg, 3),
"neu": round(neu, 3),
"pos": round(pos, 3),
"compound": round(compound, 4),
}
return sentiment_dict
|