File size: 21,764 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
# Natural Language Toolkit: vader
#
# Copyright (C) 2001-2023 NLTK Project
# Author: C.J. Hutto <[email protected]>
#         Ewan Klein <[email protected]> (modifications)
#         Pierpaolo Pantone <[email protected]> (modifications)
#         George Berry <[email protected]> (modifications)
#         Malavika Suresh <[email protected]> (modifications)
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
#
# Modifications to the original VADER code have been made in order to
# integrate it into NLTK. These have involved changes to
# ensure Python 3 compatibility, and refactoring to achieve greater modularity.

"""

If you use the VADER sentiment analysis tools, please cite:



Hutto, C.J. & Gilbert, E.E. (2014). VADER: A Parsimonious Rule-based Model for

Sentiment Analysis of Social Media Text. Eighth International Conference on

Weblogs and Social Media (ICWSM-14). Ann Arbor, MI, June 2014.

"""

import math
import re
import string
from itertools import product

import nltk.data
from nltk.util import pairwise


class VaderConstants:
    """

    A class to keep the Vader lists and constants.

    """

    ##Constants##
    # (empirically derived mean sentiment intensity rating increase for booster words)
    B_INCR = 0.293
    B_DECR = -0.293

    # (empirically derived mean sentiment intensity rating increase for using
    # ALLCAPs to emphasize a word)
    C_INCR = 0.733

    N_SCALAR = -0.74

    NEGATE = {
        "aint",
        "arent",
        "cannot",
        "cant",
        "couldnt",
        "darent",
        "didnt",
        "doesnt",
        "ain't",
        "aren't",
        "can't",
        "couldn't",
        "daren't",
        "didn't",
        "doesn't",
        "dont",
        "hadnt",
        "hasnt",
        "havent",
        "isnt",
        "mightnt",
        "mustnt",
        "neither",
        "don't",
        "hadn't",
        "hasn't",
        "haven't",
        "isn't",
        "mightn't",
        "mustn't",
        "neednt",
        "needn't",
        "never",
        "none",
        "nope",
        "nor",
        "not",
        "nothing",
        "nowhere",
        "oughtnt",
        "shant",
        "shouldnt",
        "uhuh",
        "wasnt",
        "werent",
        "oughtn't",
        "shan't",
        "shouldn't",
        "uh-uh",
        "wasn't",
        "weren't",
        "without",
        "wont",
        "wouldnt",
        "won't",
        "wouldn't",
        "rarely",
        "seldom",
        "despite",
    }

    # booster/dampener 'intensifiers' or 'degree adverbs'
    # https://en.wiktionary.org/wiki/Category:English_degree_adverbs

    BOOSTER_DICT = {
        "absolutely": B_INCR,
        "amazingly": B_INCR,
        "awfully": B_INCR,
        "completely": B_INCR,
        "considerably": B_INCR,
        "decidedly": B_INCR,
        "deeply": B_INCR,
        "effing": B_INCR,
        "enormously": B_INCR,
        "entirely": B_INCR,
        "especially": B_INCR,
        "exceptionally": B_INCR,
        "extremely": B_INCR,
        "fabulously": B_INCR,
        "flipping": B_INCR,
        "flippin": B_INCR,
        "fricking": B_INCR,
        "frickin": B_INCR,
        "frigging": B_INCR,
        "friggin": B_INCR,
        "fully": B_INCR,
        "fucking": B_INCR,
        "greatly": B_INCR,
        "hella": B_INCR,
        "highly": B_INCR,
        "hugely": B_INCR,
        "incredibly": B_INCR,
        "intensely": B_INCR,
        "majorly": B_INCR,
        "more": B_INCR,
        "most": B_INCR,
        "particularly": B_INCR,
        "purely": B_INCR,
        "quite": B_INCR,
        "really": B_INCR,
        "remarkably": B_INCR,
        "so": B_INCR,
        "substantially": B_INCR,
        "thoroughly": B_INCR,
        "totally": B_INCR,
        "tremendously": B_INCR,
        "uber": B_INCR,
        "unbelievably": B_INCR,
        "unusually": B_INCR,
        "utterly": B_INCR,
        "very": B_INCR,
        "almost": B_DECR,
        "barely": B_DECR,
        "hardly": B_DECR,
        "just enough": B_DECR,
        "kind of": B_DECR,
        "kinda": B_DECR,
        "kindof": B_DECR,
        "kind-of": B_DECR,
        "less": B_DECR,
        "little": B_DECR,
        "marginally": B_DECR,
        "occasionally": B_DECR,
        "partly": B_DECR,
        "scarcely": B_DECR,
        "slightly": B_DECR,
        "somewhat": B_DECR,
        "sort of": B_DECR,
        "sorta": B_DECR,
        "sortof": B_DECR,
        "sort-of": B_DECR,
    }

    # check for special case idioms using a sentiment-laden keyword known to SAGE
    SPECIAL_CASE_IDIOMS = {
        "the shit": 3,
        "the bomb": 3,
        "bad ass": 1.5,
        "yeah right": -2,
        "cut the mustard": 2,
        "kiss of death": -1.5,
        "hand to mouth": -2,
    }

    # for removing punctuation
    REGEX_REMOVE_PUNCTUATION = re.compile(f"[{re.escape(string.punctuation)}]")

    PUNC_LIST = [
        ".",
        "!",
        "?",
        ",",
        ";",
        ":",
        "-",
        "'",
        '"',
        "!!",
        "!!!",
        "??",
        "???",
        "?!?",
        "!?!",
        "?!?!",
        "!?!?",
    ]

    def __init__(self):
        pass

    def negated(self, input_words, include_nt=True):
        """

        Determine if input contains negation words

        """
        neg_words = self.NEGATE
        if any(word.lower() in neg_words for word in input_words):
            return True
        if include_nt:
            if any("n't" in word.lower() for word in input_words):
                return True
        for first, second in pairwise(input_words):
            if second.lower() == "least" and first.lower() != "at":
                return True
        return False

    def normalize(self, score, alpha=15):
        """

        Normalize the score to be between -1 and 1 using an alpha that

        approximates the max expected value

        """
        norm_score = score / math.sqrt((score * score) + alpha)
        return norm_score

    def scalar_inc_dec(self, word, valence, is_cap_diff):
        """

        Check if the preceding words increase, decrease, or negate/nullify the

        valence

        """
        scalar = 0.0
        word_lower = word.lower()
        if word_lower in self.BOOSTER_DICT:
            scalar = self.BOOSTER_DICT[word_lower]
            if valence < 0:
                scalar *= -1
            # check if booster/dampener word is in ALLCAPS (while others aren't)
            if word.isupper() and is_cap_diff:
                if valence > 0:
                    scalar += self.C_INCR
                else:
                    scalar -= self.C_INCR
        return scalar


class SentiText:
    """

    Identify sentiment-relevant string-level properties of input text.

    """

    def __init__(self, text, punc_list, regex_remove_punctuation):
        if not isinstance(text, str):
            text = str(text.encode("utf-8"))
        self.text = text
        self.PUNC_LIST = punc_list
        self.REGEX_REMOVE_PUNCTUATION = regex_remove_punctuation
        self.words_and_emoticons = self._words_and_emoticons()
        # doesn't separate words from
        # adjacent punctuation (keeps emoticons & contractions)
        self.is_cap_diff = self.allcap_differential(self.words_and_emoticons)

    def _words_plus_punc(self):
        """

        Returns mapping of form:

        {

            'cat,': 'cat',

            ',cat': 'cat',

        }

        """
        no_punc_text = self.REGEX_REMOVE_PUNCTUATION.sub("", self.text)
        # removes punctuation (but loses emoticons & contractions)
        words_only = no_punc_text.split()
        # remove singletons
        words_only = {w for w in words_only if len(w) > 1}
        # the product gives ('cat', ',') and (',', 'cat')
        punc_before = {"".join(p): p[1] for p in product(self.PUNC_LIST, words_only)}
        punc_after = {"".join(p): p[0] for p in product(words_only, self.PUNC_LIST)}
        words_punc_dict = punc_before
        words_punc_dict.update(punc_after)
        return words_punc_dict

    def _words_and_emoticons(self):
        """

        Removes leading and trailing puncutation

        Leaves contractions and most emoticons

            Does not preserve punc-plus-letter emoticons (e.g. :D)

        """
        wes = self.text.split()
        words_punc_dict = self._words_plus_punc()
        wes = [we for we in wes if len(we) > 1]
        for i, we in enumerate(wes):
            if we in words_punc_dict:
                wes[i] = words_punc_dict[we]
        return wes

    def allcap_differential(self, words):
        """

        Check whether just some words in the input are ALL CAPS



        :param list words: The words to inspect

        :returns: `True` if some but not all items in `words` are ALL CAPS

        """
        is_different = False
        allcap_words = 0
        for word in words:
            if word.isupper():
                allcap_words += 1
        cap_differential = len(words) - allcap_words
        if 0 < cap_differential < len(words):
            is_different = True
        return is_different


class SentimentIntensityAnalyzer:
    """

    Give a sentiment intensity score to sentences.

    """

    def __init__(

        self,

        lexicon_file="sentiment/vader_lexicon.zip/vader_lexicon/vader_lexicon.txt",

    ):
        self.lexicon_file = nltk.data.load(lexicon_file)
        self.lexicon = self.make_lex_dict()
        self.constants = VaderConstants()

    def make_lex_dict(self):
        """

        Convert lexicon file to a dictionary

        """
        lex_dict = {}
        for line in self.lexicon_file.split("\n"):
            (word, measure) = line.strip().split("\t")[0:2]
            lex_dict[word] = float(measure)
        return lex_dict

    def polarity_scores(self, text):
        """

        Return a float for sentiment strength based on the input text.

        Positive values are positive valence, negative value are negative

        valence.



        :note: Hashtags are not taken into consideration (e.g. #BAD is neutral). If you

            are interested in processing the text in the hashtags too, then we recommend

            preprocessing your data to remove the #, after which the hashtag text may be

            matched as if it was a normal word in the sentence.

        """
        # text, words_and_emoticons, is_cap_diff = self.preprocess(text)
        sentitext = SentiText(
            text, self.constants.PUNC_LIST, self.constants.REGEX_REMOVE_PUNCTUATION
        )
        sentiments = []
        words_and_emoticons = sentitext.words_and_emoticons
        for item in words_and_emoticons:
            valence = 0
            i = words_and_emoticons.index(item)
            if (
                i < len(words_and_emoticons) - 1
                and item.lower() == "kind"
                and words_and_emoticons[i + 1].lower() == "of"
            ) or item.lower() in self.constants.BOOSTER_DICT:
                sentiments.append(valence)
                continue

            sentiments = self.sentiment_valence(valence, sentitext, item, i, sentiments)

        sentiments = self._but_check(words_and_emoticons, sentiments)

        return self.score_valence(sentiments, text)

    def sentiment_valence(self, valence, sentitext, item, i, sentiments):
        is_cap_diff = sentitext.is_cap_diff
        words_and_emoticons = sentitext.words_and_emoticons
        item_lowercase = item.lower()
        if item_lowercase in self.lexicon:
            # get the sentiment valence
            valence = self.lexicon[item_lowercase]

            # check if sentiment laden word is in ALL CAPS (while others aren't)
            if item.isupper() and is_cap_diff:
                if valence > 0:
                    valence += self.constants.C_INCR
                else:
                    valence -= self.constants.C_INCR

            for start_i in range(0, 3):
                if (
                    i > start_i
                    and words_and_emoticons[i - (start_i + 1)].lower()
                    not in self.lexicon
                ):
                    # dampen the scalar modifier of preceding words and emoticons
                    # (excluding the ones that immediately preceed the item) based
                    # on their distance from the current item.
                    s = self.constants.scalar_inc_dec(
                        words_and_emoticons[i - (start_i + 1)], valence, is_cap_diff
                    )
                    if start_i == 1 and s != 0:
                        s = s * 0.95
                    if start_i == 2 and s != 0:
                        s = s * 0.9
                    valence = valence + s
                    valence = self._never_check(
                        valence, words_and_emoticons, start_i, i
                    )
                    if start_i == 2:
                        valence = self._idioms_check(valence, words_and_emoticons, i)

                        # future work: consider other sentiment-laden idioms
                        # other_idioms =
                        # {"back handed": -2, "blow smoke": -2, "blowing smoke": -2,
                        #  "upper hand": 1, "break a leg": 2,
                        #  "cooking with gas": 2, "in the black": 2, "in the red": -2,
                        #  "on the ball": 2,"under the weather": -2}

            valence = self._least_check(valence, words_and_emoticons, i)

        sentiments.append(valence)
        return sentiments

    def _least_check(self, valence, words_and_emoticons, i):
        # check for negation case using "least"
        if (
            i > 1
            and words_and_emoticons[i - 1].lower() not in self.lexicon
            and words_and_emoticons[i - 1].lower() == "least"
        ):
            if (
                words_and_emoticons[i - 2].lower() != "at"
                and words_and_emoticons[i - 2].lower() != "very"
            ):
                valence = valence * self.constants.N_SCALAR
        elif (
            i > 0
            and words_and_emoticons[i - 1].lower() not in self.lexicon
            and words_and_emoticons[i - 1].lower() == "least"
        ):
            valence = valence * self.constants.N_SCALAR
        return valence

    def _but_check(self, words_and_emoticons, sentiments):
        words_and_emoticons = [w_e.lower() for w_e in words_and_emoticons]
        but = {"but"} & set(words_and_emoticons)
        if but:
            bi = words_and_emoticons.index(next(iter(but)))
            for sidx, sentiment in enumerate(sentiments):
                if sidx < bi:
                    sentiments[sidx] = sentiment * 0.5
                elif sidx > bi:
                    sentiments[sidx] = sentiment * 1.5
        return sentiments

    def _idioms_check(self, valence, words_and_emoticons, i):
        onezero = f"{words_and_emoticons[i - 1]} {words_and_emoticons[i]}"

        twoonezero = "{} {} {}".format(
            words_and_emoticons[i - 2],
            words_and_emoticons[i - 1],
            words_and_emoticons[i],
        )

        twoone = f"{words_and_emoticons[i - 2]} {words_and_emoticons[i - 1]}"

        threetwoone = "{} {} {}".format(
            words_and_emoticons[i - 3],
            words_and_emoticons[i - 2],
            words_and_emoticons[i - 1],
        )

        threetwo = "{} {}".format(
            words_and_emoticons[i - 3], words_and_emoticons[i - 2]
        )

        sequences = [onezero, twoonezero, twoone, threetwoone, threetwo]

        for seq in sequences:
            if seq in self.constants.SPECIAL_CASE_IDIOMS:
                valence = self.constants.SPECIAL_CASE_IDIOMS[seq]
                break

        if len(words_and_emoticons) - 1 > i:
            zeroone = f"{words_and_emoticons[i]} {words_and_emoticons[i + 1]}"
            if zeroone in self.constants.SPECIAL_CASE_IDIOMS:
                valence = self.constants.SPECIAL_CASE_IDIOMS[zeroone]
        if len(words_and_emoticons) - 1 > i + 1:
            zeroonetwo = "{} {} {}".format(
                words_and_emoticons[i],
                words_and_emoticons[i + 1],
                words_and_emoticons[i + 2],
            )
            if zeroonetwo in self.constants.SPECIAL_CASE_IDIOMS:
                valence = self.constants.SPECIAL_CASE_IDIOMS[zeroonetwo]

        # check for booster/dampener bi-grams such as 'sort of' or 'kind of'
        if (
            threetwo in self.constants.BOOSTER_DICT
            or twoone in self.constants.BOOSTER_DICT
        ):
            valence = valence + self.constants.B_DECR
        return valence

    def _never_check(self, valence, words_and_emoticons, start_i, i):
        if start_i == 0:
            if self.constants.negated([words_and_emoticons[i - 1]]):
                valence = valence * self.constants.N_SCALAR
        if start_i == 1:
            if words_and_emoticons[i - 2] == "never" and (
                words_and_emoticons[i - 1] == "so"
                or words_and_emoticons[i - 1] == "this"
            ):
                valence = valence * 1.5
            elif self.constants.negated([words_and_emoticons[i - (start_i + 1)]]):
                valence = valence * self.constants.N_SCALAR
        if start_i == 2:
            if (
                words_and_emoticons[i - 3] == "never"
                and (
                    words_and_emoticons[i - 2] == "so"
                    or words_and_emoticons[i - 2] == "this"
                )
                or (
                    words_and_emoticons[i - 1] == "so"
                    or words_and_emoticons[i - 1] == "this"
                )
            ):
                valence = valence * 1.25
            elif self.constants.negated([words_and_emoticons[i - (start_i + 1)]]):
                valence = valence * self.constants.N_SCALAR
        return valence

    def _punctuation_emphasis(self, sum_s, text):
        # add emphasis from exclamation points and question marks
        ep_amplifier = self._amplify_ep(text)
        qm_amplifier = self._amplify_qm(text)
        punct_emph_amplifier = ep_amplifier + qm_amplifier
        return punct_emph_amplifier

    def _amplify_ep(self, text):
        # check for added emphasis resulting from exclamation points (up to 4 of them)
        ep_count = text.count("!")
        if ep_count > 4:
            ep_count = 4
        # (empirically derived mean sentiment intensity rating increase for
        # exclamation points)
        ep_amplifier = ep_count * 0.292
        return ep_amplifier

    def _amplify_qm(self, text):
        # check for added emphasis resulting from question marks (2 or 3+)
        qm_count = text.count("?")
        qm_amplifier = 0
        if qm_count > 1:
            if qm_count <= 3:
                # (empirically derived mean sentiment intensity rating increase for
                # question marks)
                qm_amplifier = qm_count * 0.18
            else:
                qm_amplifier = 0.96
        return qm_amplifier

    def _sift_sentiment_scores(self, sentiments):
        # want separate positive versus negative sentiment scores
        pos_sum = 0.0
        neg_sum = 0.0
        neu_count = 0
        for sentiment_score in sentiments:
            if sentiment_score > 0:
                pos_sum += (
                    float(sentiment_score) + 1
                )  # compensates for neutral words that are counted as 1
            if sentiment_score < 0:
                neg_sum += (
                    float(sentiment_score) - 1
                )  # when used with math.fabs(), compensates for neutrals
            if sentiment_score == 0:
                neu_count += 1
        return pos_sum, neg_sum, neu_count

    def score_valence(self, sentiments, text):
        if sentiments:
            sum_s = float(sum(sentiments))
            # compute and add emphasis from punctuation in text
            punct_emph_amplifier = self._punctuation_emphasis(sum_s, text)
            if sum_s > 0:
                sum_s += punct_emph_amplifier
            elif sum_s < 0:
                sum_s -= punct_emph_amplifier

            compound = self.constants.normalize(sum_s)
            # discriminate between positive, negative and neutral sentiment scores
            pos_sum, neg_sum, neu_count = self._sift_sentiment_scores(sentiments)

            if pos_sum > math.fabs(neg_sum):
                pos_sum += punct_emph_amplifier
            elif pos_sum < math.fabs(neg_sum):
                neg_sum -= punct_emph_amplifier

            total = pos_sum + math.fabs(neg_sum) + neu_count
            pos = math.fabs(pos_sum / total)
            neg = math.fabs(neg_sum / total)
            neu = math.fabs(neu_count / total)

        else:
            compound = 0.0
            pos = 0.0
            neg = 0.0
            neu = 0.0

        sentiment_dict = {
            "neg": round(neg, 3),
            "neu": round(neu, 3),
            "pos": round(pos, 3),
            "compound": round(compound, 4),
        }

        return sentiment_dict