File size: 15,809 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
# Natural Language Toolkit: Relation Extraction
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Ewan Klein <[email protected]>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT

"""

Code for extracting relational triples from the ieer and conll2002 corpora.



Relations are stored internally as dictionaries ('reldicts').



The two serialization outputs are "rtuple" and "clause".



- An rtuple is a tuple of the form ``(subj, filler, obj)``,

  where ``subj`` and ``obj`` are pairs of Named Entity mentions, and ``filler`` is the string of words

  occurring between ``sub`` and ``obj`` (with no intervening NEs). Strings are printed via ``repr()`` to

  circumvent locale variations in rendering utf-8 encoded strings.

- A clause is an atom of the form ``relsym(subjsym, objsym)``,

  where the relation, subject and object have been canonicalized to single strings.

"""

# todo: get a more general solution to canonicalized symbols for clauses -- maybe use xmlcharrefs?

import html
import re
from collections import defaultdict

# Dictionary that associates corpora with NE classes
NE_CLASSES = {
    "ieer": [
        "LOCATION",
        "ORGANIZATION",
        "PERSON",
        "DURATION",
        "DATE",
        "CARDINAL",
        "PERCENT",
        "MONEY",
        "MEASURE",
    ],
    "conll2002": ["LOC", "PER", "ORG"],
    "ace": [
        "LOCATION",
        "ORGANIZATION",
        "PERSON",
        "DURATION",
        "DATE",
        "CARDINAL",
        "PERCENT",
        "MONEY",
        "MEASURE",
        "FACILITY",
        "GPE",
    ],
}

# Allow abbreviated class labels
short2long = dict(LOC="LOCATION", ORG="ORGANIZATION", PER="PERSON")
long2short = dict(LOCATION="LOC", ORGANIZATION="ORG", PERSON="PER")


def _expand(type):
    """

    Expand an NE class name.

    :type type: str

    :rtype: str

    """
    try:
        return short2long[type]
    except KeyError:
        return type


def class_abbrev(type):
    """

    Abbreviate an NE class name.

    :type type: str

    :rtype: str

    """
    try:
        return long2short[type]
    except KeyError:
        return type


def _join(lst, sep=" ", untag=False):
    """

    Join a list into a string, turning tags tuples into tag strings or just words.

    :param untag: if ``True``, omit the tag from tagged input strings.

    :type lst: list

    :rtype: str

    """
    try:
        return sep.join(lst)
    except TypeError:
        if untag:
            return sep.join(tup[0] for tup in lst)
        from nltk.tag import tuple2str

        return sep.join(tuple2str(tup) for tup in lst)


def descape_entity(m, defs=html.entities.entitydefs):
    """

    Translate one entity to its ISO Latin value.

    Inspired by example from effbot.org





    """
    try:
        return defs[m.group(1)]

    except KeyError:
        return m.group(0)  # use as is


def list2sym(lst):
    """

    Convert a list of strings into a canonical symbol.

    :type lst: list

    :return: a Unicode string without whitespace

    :rtype: unicode

    """
    sym = _join(lst, "_", untag=True)
    sym = sym.lower()
    ENT = re.compile(r"&(\w+?);")
    sym = ENT.sub(descape_entity, sym)
    sym = sym.replace(".", "")
    return sym


def tree2semi_rel(tree):
    """

    Group a chunk structure into a list of 'semi-relations' of the form (list(str), ``Tree``).



    In order to facilitate the construction of (``Tree``, string, ``Tree``) triples, this

    identifies pairs whose first member is a list (possibly empty) of terminal

    strings, and whose second member is a ``Tree`` of the form (NE_label, terminals).



    :param tree: a chunk tree

    :return: a list of pairs (list(str), ``Tree``)

    :rtype: list of tuple

    """

    from nltk.tree import Tree

    semi_rels = []
    semi_rel = [[], None]

    for dtr in tree:
        if not isinstance(dtr, Tree):
            semi_rel[0].append(dtr)
        else:
            # dtr is a Tree
            semi_rel[1] = dtr
            semi_rels.append(semi_rel)
            semi_rel = [[], None]
    return semi_rels


def semi_rel2reldict(pairs, window=5, trace=False):
    """

    Converts the pairs generated by ``tree2semi_rel`` into a 'reldict': a dictionary which

    stores information about the subject and object NEs plus the filler between them.

    Additionally, a left and right context of length =< window are captured (within

    a given input sentence).



    :param pairs: a pair of list(str) and ``Tree``, as generated by

    :param window: a threshold for the number of items to include in the left and right context

    :type window: int

    :return: 'relation' dictionaries whose keys are 'lcon', 'subjclass', 'subjtext', 'subjsym', 'filler', objclass', objtext', 'objsym' and 'rcon'

    :rtype: list(defaultdict)

    """
    result = []
    while len(pairs) > 2:
        reldict = defaultdict(str)
        reldict["lcon"] = _join(pairs[0][0][-window:])
        reldict["subjclass"] = pairs[0][1].label()
        reldict["subjtext"] = _join(pairs[0][1].leaves())
        reldict["subjsym"] = list2sym(pairs[0][1].leaves())
        reldict["filler"] = _join(pairs[1][0])
        reldict["untagged_filler"] = _join(pairs[1][0], untag=True)
        reldict["objclass"] = pairs[1][1].label()
        reldict["objtext"] = _join(pairs[1][1].leaves())
        reldict["objsym"] = list2sym(pairs[1][1].leaves())
        reldict["rcon"] = _join(pairs[2][0][:window])
        if trace:
            print(
                "(%s(%s, %s)"
                % (
                    reldict["untagged_filler"],
                    reldict["subjclass"],
                    reldict["objclass"],
                )
            )
        result.append(reldict)
        pairs = pairs[1:]
    return result


def extract_rels(subjclass, objclass, doc, corpus="ace", pattern=None, window=10):
    """

    Filter the output of ``semi_rel2reldict`` according to specified NE classes and a filler pattern.



    The parameters ``subjclass`` and ``objclass`` can be used to restrict the

    Named Entities to particular types (any of 'LOCATION', 'ORGANIZATION',

    'PERSON', 'DURATION', 'DATE', 'CARDINAL', 'PERCENT', 'MONEY', 'MEASURE').



    :param subjclass: the class of the subject Named Entity.

    :type subjclass: str

    :param objclass: the class of the object Named Entity.

    :type objclass: str

    :param doc: input document

    :type doc: ieer document or a list of chunk trees

    :param corpus: name of the corpus to take as input; possible values are

        'ieer' and 'conll2002'

    :type corpus: str

    :param pattern: a regular expression for filtering the fillers of

        retrieved triples.

    :type pattern: SRE_Pattern

    :param window: filters out fillers which exceed this threshold

    :type window: int

    :return: see ``mk_reldicts``

    :rtype: list(defaultdict)

    """

    if subjclass and subjclass not in NE_CLASSES[corpus]:
        if _expand(subjclass) in NE_CLASSES[corpus]:
            subjclass = _expand(subjclass)
        else:
            raise ValueError(
                "your value for the subject type has not been recognized: %s"
                % subjclass
            )
    if objclass and objclass not in NE_CLASSES[corpus]:
        if _expand(objclass) in NE_CLASSES[corpus]:
            objclass = _expand(objclass)
        else:
            raise ValueError(
                "your value for the object type has not been recognized: %s" % objclass
            )

    if corpus == "ace" or corpus == "conll2002":
        pairs = tree2semi_rel(doc)
    elif corpus == "ieer":
        pairs = tree2semi_rel(doc.text) + tree2semi_rel(doc.headline)
    else:
        raise ValueError("corpus type not recognized")

    reldicts = semi_rel2reldict(pairs)

    relfilter = lambda x: (
        x["subjclass"] == subjclass
        and len(x["filler"].split()) <= window
        and pattern.match(x["filler"])
        and x["objclass"] == objclass
    )

    return list(filter(relfilter, reldicts))


def rtuple(reldict, lcon=False, rcon=False):
    """

    Pretty print the reldict as an rtuple.

    :param reldict: a relation dictionary

    :type reldict: defaultdict

    """
    items = [
        class_abbrev(reldict["subjclass"]),
        reldict["subjtext"],
        reldict["filler"],
        class_abbrev(reldict["objclass"]),
        reldict["objtext"],
    ]
    format = "[%s: %r] %r [%s: %r]"
    if lcon:
        items = [reldict["lcon"]] + items
        format = "...%r)" + format
    if rcon:
        items.append(reldict["rcon"])
        format = format + "(%r..."
    printargs = tuple(items)
    return format % printargs


def clause(reldict, relsym):
    """

    Print the relation in clausal form.

    :param reldict: a relation dictionary

    :type reldict: defaultdict

    :param relsym: a label for the relation

    :type relsym: str

    """
    items = (relsym, reldict["subjsym"], reldict["objsym"])
    return "%s(%r, %r)" % items


#######################################################
# Demos of relation extraction with regular expressions
#######################################################

############################################
# Example of in(ORG, LOC)
############################################
def in_demo(trace=0, sql=True):
    """

    Select pairs of organizations and locations whose mentions occur with an

    intervening occurrence of the preposition "in".



    If the sql parameter is set to True, then the entity pairs are loaded into

    an in-memory database, and subsequently pulled out using an SQL "SELECT"

    query.

    """
    from nltk.corpus import ieer

    if sql:
        try:
            import sqlite3

            connection = sqlite3.connect(":memory:")
            cur = connection.cursor()
            cur.execute(
                """create table Locations

            (OrgName text, LocationName text, DocID text)"""
            )
        except ImportError:
            import warnings

            warnings.warn("Cannot import sqlite; sql flag will be ignored.")

    IN = re.compile(r".*\bin\b(?!\b.+ing)")

    print()
    print("IEER: in(ORG, LOC) -- just the clauses:")
    print("=" * 45)

    for file in ieer.fileids():
        for doc in ieer.parsed_docs(file):
            if trace:
                print(doc.docno)
                print("=" * 15)
            for rel in extract_rels("ORG", "LOC", doc, corpus="ieer", pattern=IN):
                print(clause(rel, relsym="IN"))
                if sql:
                    try:
                        rtuple = (rel["subjtext"], rel["objtext"], doc.docno)
                        cur.execute(
                            """insert into Locations

                                    values (?, ?, ?)""",
                            rtuple,
                        )
                        connection.commit()
                    except NameError:
                        pass

    if sql:
        try:
            cur.execute(
                """select OrgName from Locations

                        where LocationName = 'Atlanta'"""
            )
            print()
            print("Extract data from SQL table: ORGs in Atlanta")
            print("-" * 15)
            for row in cur:
                print(row)
        except NameError:
            pass


############################################
# Example of has_role(PER, LOC)
############################################


def roles_demo(trace=0):
    from nltk.corpus import ieer

    roles = r"""

    (.*(                   # assorted roles

    analyst|

    chair(wo)?man|

    commissioner|

    counsel|

    director|

    economist|

    editor|

    executive|

    foreman|

    governor|

    head|

    lawyer|

    leader|

    librarian).*)|

    manager|

    partner|

    president|

    producer|

    professor|

    researcher|

    spokes(wo)?man|

    writer|

    ,\sof\sthe?\s*  # "X, of (the) Y"

    """
    ROLES = re.compile(roles, re.VERBOSE)

    print()
    print("IEER: has_role(PER, ORG) -- raw rtuples:")
    print("=" * 45)

    for file in ieer.fileids():
        for doc in ieer.parsed_docs(file):
            lcon = rcon = False
            if trace:
                print(doc.docno)
                print("=" * 15)
                lcon = rcon = True
            for rel in extract_rels("PER", "ORG", doc, corpus="ieer", pattern=ROLES):
                print(rtuple(rel, lcon=lcon, rcon=rcon))


##############################################
### Show what's in the IEER Headlines
##############################################


def ieer_headlines():

    from nltk.corpus import ieer
    from nltk.tree import Tree

    print("IEER: First 20 Headlines")
    print("=" * 45)

    trees = [
        (doc.docno, doc.headline)
        for file in ieer.fileids()
        for doc in ieer.parsed_docs(file)
    ]
    for tree in trees[:20]:
        print()
        print("%s:\n%s" % tree)


#############################################
## Dutch CONLL2002: take_on_role(PER, ORG
#############################################


def conllned(trace=1):
    """

    Find the copula+'van' relation ('of') in the Dutch tagged training corpus

    from CoNLL 2002.

    """

    from nltk.corpus import conll2002

    vnv = """

    (

    is/V|    # 3rd sing present and

    was/V|   # past forms of the verb zijn ('be')

    werd/V|  # and also present

    wordt/V  # past of worden ('become)

    )

    .*       # followed by anything

    van/Prep # followed by van ('of')

    """
    VAN = re.compile(vnv, re.VERBOSE)

    print()
    print("Dutch CoNLL2002: van(PER, ORG) -- raw rtuples with context:")
    print("=" * 45)

    for doc in conll2002.chunked_sents("ned.train"):
        lcon = rcon = False
        if trace:
            lcon = rcon = True
        for rel in extract_rels(
            "PER", "ORG", doc, corpus="conll2002", pattern=VAN, window=10
        ):
            print(rtuple(rel, lcon=lcon, rcon=rcon))


#############################################
## Spanish CONLL2002: (PER, ORG)
#############################################


def conllesp():
    from nltk.corpus import conll2002

    de = """

    .*

    (

    de/SP|

    del/SP

    )

    """
    DE = re.compile(de, re.VERBOSE)

    print()
    print("Spanish CoNLL2002: de(ORG, LOC) -- just the first 10 clauses:")
    print("=" * 45)
    rels = [
        rel
        for doc in conll2002.chunked_sents("esp.train")
        for rel in extract_rels("ORG", "LOC", doc, corpus="conll2002", pattern=DE)
    ]
    for r in rels[:10]:
        print(clause(r, relsym="DE"))
    print()


def ne_chunked():
    print()
    print("1500 Sentences from Penn Treebank, as processed by NLTK NE Chunker")
    print("=" * 45)
    ROLE = re.compile(
        r".*(chairman|president|trader|scientist|economist|analyst|partner).*"
    )
    rels = []
    for i, sent in enumerate(nltk.corpus.treebank.tagged_sents()[:1500]):
        sent = nltk.ne_chunk(sent)
        rels = extract_rels("PER", "ORG", sent, corpus="ace", pattern=ROLE, window=7)
        for rel in rels:
            print(f"{i:<5}{rtuple(rel)}")


if __name__ == "__main__":
    import nltk
    from nltk.sem import relextract

    in_demo(trace=0)
    roles_demo(trace=0)
    conllned()
    conllesp()
    ieer_headlines()
    ne_chunked()