Spaces:
Sleeping
Sleeping
File size: 26,282 Bytes
d916065 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 |
# Natural Language Toolkit: Models for first-order languages with lambda
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Ewan Klein <[email protected]>,
# URL: <https://www.nltk.org>
# For license information, see LICENSE.TXT
# TODO:
# - fix tracing
# - fix iterator-based approach to existentials
"""
This module provides data structures for representing first-order
models.
"""
import inspect
import re
import sys
import textwrap
from pprint import pformat
from nltk.decorators import decorator # this used in code that is commented out
from nltk.sem.logic import (
AbstractVariableExpression,
AllExpression,
AndExpression,
ApplicationExpression,
EqualityExpression,
ExistsExpression,
Expression,
IffExpression,
ImpExpression,
IndividualVariableExpression,
IotaExpression,
LambdaExpression,
NegatedExpression,
OrExpression,
Variable,
is_indvar,
)
class Error(Exception):
pass
class Undefined(Error):
pass
def trace(f, *args, **kw):
argspec = inspect.getfullargspec(f)
d = dict(zip(argspec[0], args))
if d.pop("trace", None):
print()
for item in d.items():
print("%s => %s" % item)
return f(*args, **kw)
def is_rel(s):
"""
Check whether a set represents a relation (of any arity).
:param s: a set containing tuples of str elements
:type s: set
:rtype: bool
"""
# we have the empty relation, i.e. set()
if len(s) == 0:
return True
# all the elements are tuples of the same length
elif all(isinstance(el, tuple) for el in s) and len(max(s)) == len(min(s)):
return True
else:
raise ValueError("Set %r contains sequences of different lengths" % s)
def set2rel(s):
"""
Convert a set containing individuals (strings or numbers) into a set of
unary tuples. Any tuples of strings already in the set are passed through
unchanged.
For example:
- set(['a', 'b']) => set([('a',), ('b',)])
- set([3, 27]) => set([('3',), ('27',)])
:type s: set
:rtype: set of tuple of str
"""
new = set()
for elem in s:
if isinstance(elem, str):
new.add((elem,))
elif isinstance(elem, int):
new.add(str(elem))
else:
new.add(elem)
return new
def arity(rel):
"""
Check the arity of a relation.
:type rel: set of tuples
:rtype: int of tuple of str
"""
if len(rel) == 0:
return 0
return len(list(rel)[0])
class Valuation(dict):
"""
A dictionary which represents a model-theoretic Valuation of non-logical constants.
Keys are strings representing the constants to be interpreted, and values correspond
to individuals (represented as strings) and n-ary relations (represented as sets of tuples
of strings).
An instance of ``Valuation`` will raise a KeyError exception (i.e.,
just behave like a standard dictionary) if indexed with an expression that
is not in its list of symbols.
"""
def __init__(self, xs):
"""
:param xs: a list of (symbol, value) pairs.
"""
super().__init__()
for (sym, val) in xs:
if isinstance(val, str) or isinstance(val, bool):
self[sym] = val
elif isinstance(val, set):
self[sym] = set2rel(val)
else:
msg = textwrap.fill(
"Error in initializing Valuation. "
"Unrecognized value for symbol '%s':\n%s" % (sym, val),
width=66,
)
raise ValueError(msg)
def __getitem__(self, key):
if key in self:
return dict.__getitem__(self, key)
else:
raise Undefined("Unknown expression: '%s'" % key)
def __str__(self):
return pformat(self)
@property
def domain(self):
"""Set-theoretic domain of the value-space of a Valuation."""
dom = []
for val in self.values():
if isinstance(val, str):
dom.append(val)
elif not isinstance(val, bool):
dom.extend(
[elem for tuple_ in val for elem in tuple_ if elem is not None]
)
return set(dom)
@property
def symbols(self):
"""The non-logical constants which the Valuation recognizes."""
return sorted(self.keys())
@classmethod
def fromstring(cls, s):
return read_valuation(s)
##########################################
# REs used by the _read_valuation function
##########################################
_VAL_SPLIT_RE = re.compile(r"\s*=+>\s*")
_ELEMENT_SPLIT_RE = re.compile(r"\s*,\s*")
_TUPLES_RE = re.compile(
r"""\s*
(\([^)]+\)) # tuple-expression
\s*""",
re.VERBOSE,
)
def _read_valuation_line(s):
"""
Read a line in a valuation file.
Lines are expected to be of the form::
noosa => n
girl => {g1, g2}
chase => {(b1, g1), (b2, g1), (g1, d1), (g2, d2)}
:param s: input line
:type s: str
:return: a pair (symbol, value)
:rtype: tuple
"""
pieces = _VAL_SPLIT_RE.split(s)
symbol = pieces[0]
value = pieces[1]
# check whether the value is meant to be a set
if value.startswith("{"):
value = value[1:-1]
tuple_strings = _TUPLES_RE.findall(value)
# are the set elements tuples?
if tuple_strings:
set_elements = []
for ts in tuple_strings:
ts = ts[1:-1]
element = tuple(_ELEMENT_SPLIT_RE.split(ts))
set_elements.append(element)
else:
set_elements = _ELEMENT_SPLIT_RE.split(value)
value = set(set_elements)
return symbol, value
def read_valuation(s, encoding=None):
"""
Convert a valuation string into a valuation.
:param s: a valuation string
:type s: str
:param encoding: the encoding of the input string, if it is binary
:type encoding: str
:return: a ``nltk.sem`` valuation
:rtype: Valuation
"""
if encoding is not None:
s = s.decode(encoding)
statements = []
for linenum, line in enumerate(s.splitlines()):
line = line.strip()
if line.startswith("#") or line == "":
continue
try:
statements.append(_read_valuation_line(line))
except ValueError as e:
raise ValueError(f"Unable to parse line {linenum}: {line}") from e
return Valuation(statements)
class Assignment(dict):
r"""
A dictionary which represents an assignment of values to variables.
An assignment can only assign values from its domain.
If an unknown expression *a* is passed to a model *M*\ 's
interpretation function *i*, *i* will first check whether *M*\ 's
valuation assigns an interpretation to *a* as a constant, and if
this fails, *i* will delegate the interpretation of *a* to
*g*. *g* only assigns values to individual variables (i.e.,
members of the class ``IndividualVariableExpression`` in the ``logic``
module. If a variable is not assigned a value by *g*, it will raise
an ``Undefined`` exception.
A variable *Assignment* is a mapping from individual variables to
entities in the domain. Individual variables are usually indicated
with the letters ``'x'``, ``'y'``, ``'w'`` and ``'z'``, optionally
followed by an integer (e.g., ``'x0'``, ``'y332'``). Assignments are
created using the ``Assignment`` constructor, which also takes the
domain as a parameter.
>>> from nltk.sem.evaluate import Assignment
>>> dom = set(['u1', 'u2', 'u3', 'u4'])
>>> g3 = Assignment(dom, [('x', 'u1'), ('y', 'u2')])
>>> g3 == {'x': 'u1', 'y': 'u2'}
True
There is also a ``print`` format for assignments which uses a notation
closer to that in logic textbooks:
>>> print(g3)
g[u1/x][u2/y]
It is also possible to update an assignment using the ``add`` method:
>>> dom = set(['u1', 'u2', 'u3', 'u4'])
>>> g4 = Assignment(dom)
>>> g4.add('x', 'u1')
{'x': 'u1'}
With no arguments, ``purge()`` is equivalent to ``clear()`` on a dictionary:
>>> g4.purge()
>>> g4
{}
:param domain: the domain of discourse
:type domain: set
:param assign: a list of (varname, value) associations
:type assign: list
"""
def __init__(self, domain, assign=None):
super().__init__()
self.domain = domain
if assign:
for (var, val) in assign:
assert val in self.domain, "'{}' is not in the domain: {}".format(
val,
self.domain,
)
assert is_indvar(var), (
"Wrong format for an Individual Variable: '%s'" % var
)
self[var] = val
self.variant = None
self._addvariant()
def __getitem__(self, key):
if key in self:
return dict.__getitem__(self, key)
else:
raise Undefined("Not recognized as a variable: '%s'" % key)
def copy(self):
new = Assignment(self.domain)
new.update(self)
return new
def purge(self, var=None):
"""
Remove one or all keys (i.e. logic variables) from an
assignment, and update ``self.variant``.
:param var: a Variable acting as a key for the assignment.
"""
if var:
del self[var]
else:
self.clear()
self._addvariant()
return None
def __str__(self):
"""
Pretty printing for assignments. {'x', 'u'} appears as 'g[u/x]'
"""
gstring = "g"
# Deterministic output for unit testing.
variant = sorted(self.variant)
for (val, var) in variant:
gstring += f"[{val}/{var}]"
return gstring
def _addvariant(self):
"""
Create a more pretty-printable version of the assignment.
"""
list_ = []
for item in self.items():
pair = (item[1], item[0])
list_.append(pair)
self.variant = list_
return None
def add(self, var, val):
"""
Add a new variable-value pair to the assignment, and update
``self.variant``.
"""
assert val in self.domain, f"{val} is not in the domain {self.domain}"
assert is_indvar(var), "Wrong format for an Individual Variable: '%s'" % var
self[var] = val
self._addvariant()
return self
class Model:
"""
A first order model is a domain *D* of discourse and a valuation *V*.
A domain *D* is a set, and a valuation *V* is a map that associates
expressions with values in the model.
The domain of *V* should be a subset of *D*.
Construct a new ``Model``.
:type domain: set
:param domain: A set of entities representing the domain of discourse of the model.
:type valuation: Valuation
:param valuation: the valuation of the model.
:param prop: If this is set, then we are building a propositional\
model and don't require the domain of *V* to be subset of *D*.
"""
def __init__(self, domain, valuation):
assert isinstance(domain, set)
self.domain = domain
self.valuation = valuation
if not domain.issuperset(valuation.domain):
raise Error(
"The valuation domain, %s, must be a subset of the model's domain, %s"
% (valuation.domain, domain)
)
def __repr__(self):
return f"({self.domain!r}, {self.valuation!r})"
def __str__(self):
return f"Domain = {self.domain},\nValuation = \n{self.valuation}"
def evaluate(self, expr, g, trace=None):
"""
Read input expressions, and provide a handler for ``satisfy``
that blocks further propagation of the ``Undefined`` error.
:param expr: An ``Expression`` of ``logic``.
:type g: Assignment
:param g: an assignment to individual variables.
:rtype: bool or 'Undefined'
"""
try:
parsed = Expression.fromstring(expr)
value = self.satisfy(parsed, g, trace=trace)
if trace:
print()
print(f"'{expr}' evaluates to {value} under M, {g}")
return value
except Undefined:
if trace:
print()
print(f"'{expr}' is undefined under M, {g}")
return "Undefined"
def satisfy(self, parsed, g, trace=None):
"""
Recursive interpretation function for a formula of first-order logic.
Raises an ``Undefined`` error when ``parsed`` is an atomic string
but is not a symbol or an individual variable.
:return: Returns a truth value or ``Undefined`` if ``parsed`` is\
complex, and calls the interpretation function ``i`` if ``parsed``\
is atomic.
:param parsed: An expression of ``logic``.
:type g: Assignment
:param g: an assignment to individual variables.
"""
if isinstance(parsed, ApplicationExpression):
function, arguments = parsed.uncurry()
if isinstance(function, AbstractVariableExpression):
# It's a predicate expression ("P(x,y)"), so used uncurried arguments
funval = self.satisfy(function, g)
argvals = tuple(self.satisfy(arg, g) for arg in arguments)
return argvals in funval
else:
# It must be a lambda expression, so use curried form
funval = self.satisfy(parsed.function, g)
argval = self.satisfy(parsed.argument, g)
return funval[argval]
elif isinstance(parsed, NegatedExpression):
return not self.satisfy(parsed.term, g)
elif isinstance(parsed, AndExpression):
return self.satisfy(parsed.first, g) and self.satisfy(parsed.second, g)
elif isinstance(parsed, OrExpression):
return self.satisfy(parsed.first, g) or self.satisfy(parsed.second, g)
elif isinstance(parsed, ImpExpression):
return (not self.satisfy(parsed.first, g)) or self.satisfy(parsed.second, g)
elif isinstance(parsed, IffExpression):
return self.satisfy(parsed.first, g) == self.satisfy(parsed.second, g)
elif isinstance(parsed, EqualityExpression):
return self.satisfy(parsed.first, g) == self.satisfy(parsed.second, g)
elif isinstance(parsed, AllExpression):
new_g = g.copy()
for u in self.domain:
new_g.add(parsed.variable.name, u)
if not self.satisfy(parsed.term, new_g):
return False
return True
elif isinstance(parsed, ExistsExpression):
new_g = g.copy()
for u in self.domain:
new_g.add(parsed.variable.name, u)
if self.satisfy(parsed.term, new_g):
return True
return False
elif isinstance(parsed, IotaExpression):
new_g = g.copy()
for u in self.domain:
new_g.add(parsed.variable.name, u)
if self.satisfy(parsed.term, new_g):
return True
return False
elif isinstance(parsed, LambdaExpression):
cf = {}
var = parsed.variable.name
for u in self.domain:
val = self.satisfy(parsed.term, g.add(var, u))
# NB the dict would be a lot smaller if we do this:
# if val: cf[u] = val
# But then need to deal with cases where f(a) should yield
# a function rather than just False.
cf[u] = val
return cf
else:
return self.i(parsed, g, trace)
# @decorator(trace_eval)
def i(self, parsed, g, trace=False):
"""
An interpretation function.
Assuming that ``parsed`` is atomic:
- if ``parsed`` is a non-logical constant, calls the valuation *V*
- else if ``parsed`` is an individual variable, calls assignment *g*
- else returns ``Undefined``.
:param parsed: an ``Expression`` of ``logic``.
:type g: Assignment
:param g: an assignment to individual variables.
:return: a semantic value
"""
# If parsed is a propositional letter 'p', 'q', etc, it could be in valuation.symbols
# and also be an IndividualVariableExpression. We want to catch this first case.
# So there is a procedural consequence to the ordering of clauses here:
if parsed.variable.name in self.valuation.symbols:
return self.valuation[parsed.variable.name]
elif isinstance(parsed, IndividualVariableExpression):
return g[parsed.variable.name]
else:
raise Undefined("Can't find a value for %s" % parsed)
def satisfiers(self, parsed, varex, g, trace=None, nesting=0):
"""
Generate the entities from the model's domain that satisfy an open formula.
:param parsed: an open formula
:type parsed: Expression
:param varex: the relevant free individual variable in ``parsed``.
:type varex: VariableExpression or str
:param g: a variable assignment
:type g: Assignment
:return: a set of the entities that satisfy ``parsed``.
"""
spacer = " "
indent = spacer + (spacer * nesting)
candidates = []
if isinstance(varex, str):
var = Variable(varex)
else:
var = varex
if var in parsed.free():
if trace:
print()
print(
(spacer * nesting)
+ f"Open formula is '{parsed}' with assignment {g}"
)
for u in self.domain:
new_g = g.copy()
new_g.add(var.name, u)
if trace and trace > 1:
lowtrace = trace - 1
else:
lowtrace = 0
value = self.satisfy(parsed, new_g, lowtrace)
if trace:
print(indent + "(trying assignment %s)" % new_g)
# parsed == False under g[u/var]?
if value == False:
if trace:
print(indent + f"value of '{parsed}' under {new_g} is False")
# so g[u/var] is a satisfying assignment
else:
candidates.append(u)
if trace:
print(indent + f"value of '{parsed}' under {new_g} is {value}")
result = {c for c in candidates}
# var isn't free in parsed
else:
raise Undefined(f"{var.name} is not free in {parsed}")
return result
# //////////////////////////////////////////////////////////////////////
# Demo..
# //////////////////////////////////////////////////////////////////////
# number of spacer chars
mult = 30
# Demo 1: Propositional Logic
#################
def propdemo(trace=None):
"""Example of a propositional model."""
global val1, dom1, m1, g1
val1 = Valuation([("P", True), ("Q", True), ("R", False)])
dom1 = set()
m1 = Model(dom1, val1)
g1 = Assignment(dom1)
print()
print("*" * mult)
print("Propositional Formulas Demo")
print("*" * mult)
print("(Propositional constants treated as nullary predicates)")
print()
print("Model m1:\n", m1)
print("*" * mult)
sentences = [
"(P & Q)",
"(P & R)",
"- P",
"- R",
"- - P",
"- (P & R)",
"(P | R)",
"(R | P)",
"(R | R)",
"(- P | R)",
"(P | - P)",
"(P -> Q)",
"(P -> R)",
"(R -> P)",
"(P <-> P)",
"(R <-> R)",
"(P <-> R)",
]
for sent in sentences:
if trace:
print()
m1.evaluate(sent, g1, trace)
else:
print(f"The value of '{sent}' is: {m1.evaluate(sent, g1)}")
# Demo 2: FOL Model
#############
def folmodel(quiet=False, trace=None):
"""Example of a first-order model."""
global val2, v2, dom2, m2, g2
v2 = [
("adam", "b1"),
("betty", "g1"),
("fido", "d1"),
("girl", {"g1", "g2"}),
("boy", {"b1", "b2"}),
("dog", {"d1"}),
("love", {("b1", "g1"), ("b2", "g2"), ("g1", "b1"), ("g2", "b1")}),
]
val2 = Valuation(v2)
dom2 = val2.domain
m2 = Model(dom2, val2)
g2 = Assignment(dom2, [("x", "b1"), ("y", "g2")])
if not quiet:
print()
print("*" * mult)
print("Models Demo")
print("*" * mult)
print("Model m2:\n", "-" * 14, "\n", m2)
print("Variable assignment = ", g2)
exprs = ["adam", "boy", "love", "walks", "x", "y", "z"]
parsed_exprs = [Expression.fromstring(e) for e in exprs]
print()
for parsed in parsed_exprs:
try:
print(
"The interpretation of '%s' in m2 is %s"
% (parsed, m2.i(parsed, g2))
)
except Undefined:
print("The interpretation of '%s' in m2 is Undefined" % parsed)
applications = [
("boy", ("adam")),
("walks", ("adam",)),
("love", ("adam", "y")),
("love", ("y", "adam")),
]
for (fun, args) in applications:
try:
funval = m2.i(Expression.fromstring(fun), g2)
argsval = tuple(m2.i(Expression.fromstring(arg), g2) for arg in args)
print(f"{fun}({args}) evaluates to {argsval in funval}")
except Undefined:
print(f"{fun}({args}) evaluates to Undefined")
# Demo 3: FOL
#########
def foldemo(trace=None):
"""
Interpretation of closed expressions in a first-order model.
"""
folmodel(quiet=True)
print()
print("*" * mult)
print("FOL Formulas Demo")
print("*" * mult)
formulas = [
"love (adam, betty)",
"(adam = mia)",
"\\x. (boy(x) | girl(x))",
"\\x. boy(x)(adam)",
"\\x y. love(x, y)",
"\\x y. love(x, y)(adam)(betty)",
"\\x y. love(x, y)(adam, betty)",
"\\x y. (boy(x) & love(x, y))",
"\\x. exists y. (boy(x) & love(x, y))",
"exists z1. boy(z1)",
"exists x. (boy(x) & -(x = adam))",
"exists x. (boy(x) & all y. love(y, x))",
"all x. (boy(x) | girl(x))",
"all x. (girl(x) -> exists y. boy(y) & love(x, y))", # Every girl loves exists boy.
"exists x. (boy(x) & all y. (girl(y) -> love(y, x)))", # There is exists boy that every girl loves.
"exists x. (boy(x) & all y. (girl(y) -> love(x, y)))", # exists boy loves every girl.
"all x. (dog(x) -> - girl(x))",
"exists x. exists y. (love(x, y) & love(x, y))",
]
for fmla in formulas:
g2.purge()
if trace:
m2.evaluate(fmla, g2, trace)
else:
print(f"The value of '{fmla}' is: {m2.evaluate(fmla, g2)}")
# Demo 3: Satisfaction
#############
def satdemo(trace=None):
"""Satisfiers of an open formula in a first order model."""
print()
print("*" * mult)
print("Satisfiers Demo")
print("*" * mult)
folmodel(quiet=True)
formulas = [
"boy(x)",
"(x = x)",
"(boy(x) | girl(x))",
"(boy(x) & girl(x))",
"love(adam, x)",
"love(x, adam)",
"-(x = adam)",
"exists z22. love(x, z22)",
"exists y. love(y, x)",
"all y. (girl(y) -> love(x, y))",
"all y. (girl(y) -> love(y, x))",
"all y. (girl(y) -> (boy(x) & love(y, x)))",
"(boy(x) & all y. (girl(y) -> love(x, y)))",
"(boy(x) & all y. (girl(y) -> love(y, x)))",
"(boy(x) & exists y. (girl(y) & love(y, x)))",
"(girl(x) -> dog(x))",
"all y. (dog(y) -> (x = y))",
"exists y. love(y, x)",
"exists y. (love(adam, y) & love(y, x))",
]
if trace:
print(m2)
for fmla in formulas:
print(fmla)
Expression.fromstring(fmla)
parsed = [Expression.fromstring(fmla) for fmla in formulas]
for p in parsed:
g2.purge()
print(
"The satisfiers of '{}' are: {}".format(p, m2.satisfiers(p, "x", g2, trace))
)
def demo(num=0, trace=None):
"""
Run exists demos.
- num = 1: propositional logic demo
- num = 2: first order model demo (only if trace is set)
- num = 3: first order sentences demo
- num = 4: satisfaction of open formulas demo
- any other value: run all the demos
:param trace: trace = 1, or trace = 2 for more verbose tracing
"""
demos = {1: propdemo, 2: folmodel, 3: foldemo, 4: satdemo}
try:
demos[num](trace=trace)
except KeyError:
for num in demos:
demos[num](trace=trace)
if __name__ == "__main__":
demo(2, trace=0)
|