Spaces:
Sleeping
Sleeping
File size: 27,745 Bytes
d916065 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 |
# Natural Language Toolkit: Interface to the CoreNLP REST API.
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Dmitrijs Milajevs <[email protected]>
#
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
import json
import os # required for doctests
import re
import socket
import time
from typing import List, Tuple
from nltk.internals import _java_options, config_java, find_jar_iter, java
from nltk.parse.api import ParserI
from nltk.parse.dependencygraph import DependencyGraph
from nltk.tag.api import TaggerI
from nltk.tokenize.api import TokenizerI
from nltk.tree import Tree
_stanford_url = "https://stanfordnlp.github.io/CoreNLP/"
class CoreNLPServerError(EnvironmentError):
"""Exceptions associated with the Core NLP server."""
def try_port(port=0):
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.bind(("", port))
p = sock.getsockname()[1]
sock.close()
return p
class CoreNLPServer:
_MODEL_JAR_PATTERN = r"stanford-corenlp-(\d+)\.(\d+)\.(\d+)-models\.jar"
_JAR = r"stanford-corenlp-(\d+)\.(\d+)\.(\d+)\.jar"
def __init__(
self,
path_to_jar=None,
path_to_models_jar=None,
verbose=False,
java_options=None,
corenlp_options=None,
port=None,
):
if corenlp_options is None:
corenlp_options = ["-preload", "tokenize,ssplit,pos,lemma,parse,depparse"]
jars = list(
find_jar_iter(
self._JAR,
path_to_jar,
env_vars=("CORENLP",),
searchpath=(),
url=_stanford_url,
verbose=verbose,
is_regex=True,
)
)
# find the most recent code and model jar
stanford_jar = max(jars, key=lambda model_name: re.match(self._JAR, model_name))
if port is None:
try:
port = try_port(9000)
except OSError:
port = try_port()
corenlp_options.extend(["-port", str(port)])
else:
try_port(port)
corenlp_options.extend(["-port", str(port)])
self.url = f"http://localhost:{port}"
model_jar = max(
find_jar_iter(
self._MODEL_JAR_PATTERN,
path_to_models_jar,
env_vars=("CORENLP_MODELS",),
searchpath=(),
url=_stanford_url,
verbose=verbose,
is_regex=True,
),
key=lambda model_name: re.match(self._MODEL_JAR_PATTERN, model_name),
)
self.verbose = verbose
self._classpath = stanford_jar, model_jar
self.corenlp_options = corenlp_options
self.java_options = java_options or ["-mx2g"]
def start(self, stdout="devnull", stderr="devnull"):
"""Starts the CoreNLP server
:param stdout, stderr: Specifies where CoreNLP output is redirected. Valid values are 'devnull', 'stdout', 'pipe'
"""
import requests
cmd = ["edu.stanford.nlp.pipeline.StanfordCoreNLPServer"]
if self.corenlp_options:
cmd.extend(self.corenlp_options)
# Configure java.
default_options = " ".join(_java_options)
config_java(options=self.java_options, verbose=self.verbose)
try:
self.popen = java(
cmd,
classpath=self._classpath,
blocking=False,
stdout=stdout,
stderr=stderr,
)
finally:
# Return java configurations to their default values.
config_java(options=default_options, verbose=self.verbose)
# Check that the server is istill running.
returncode = self.popen.poll()
if returncode is not None:
_, stderrdata = self.popen.communicate()
raise CoreNLPServerError(
returncode,
"Could not start the server. "
"The error was: {}".format(stderrdata.decode("ascii")),
)
for i in range(30):
try:
response = requests.get(requests.compat.urljoin(self.url, "live"))
except requests.exceptions.ConnectionError:
time.sleep(1)
else:
if response.ok:
break
else:
raise CoreNLPServerError("Could not connect to the server.")
for i in range(60):
try:
response = requests.get(requests.compat.urljoin(self.url, "ready"))
except requests.exceptions.ConnectionError:
time.sleep(1)
else:
if response.ok:
break
else:
raise CoreNLPServerError("The server is not ready.")
def stop(self):
self.popen.terminate()
self.popen.wait()
def __enter__(self):
self.start()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.stop()
return False
class GenericCoreNLPParser(ParserI, TokenizerI, TaggerI):
"""Interface to the CoreNLP Parser."""
def __init__(
self,
url="http://localhost:9000",
encoding="utf8",
tagtype=None,
strict_json=True,
):
import requests
self.url = url
self.encoding = encoding
if tagtype not in ["pos", "ner", None]:
raise ValueError("tagtype must be either 'pos', 'ner' or None")
self.tagtype = tagtype
self.strict_json = strict_json
self.session = requests.Session()
def parse_sents(self, sentences, *args, **kwargs):
"""Parse multiple sentences.
Takes multiple sentences as a list where each sentence is a list of
words. Each sentence will be automatically tagged with this
CoreNLPParser instance's tagger.
If a whitespace exists inside a token, then the token will be treated as
several tokens.
:param sentences: Input sentences to parse
:type sentences: list(list(str))
:rtype: iter(iter(Tree))
"""
# Converting list(list(str)) -> list(str)
sentences = (" ".join(words) for words in sentences)
return self.raw_parse_sents(sentences, *args, **kwargs)
def raw_parse(self, sentence, properties=None, *args, **kwargs):
"""Parse a sentence.
Takes a sentence as a string; before parsing, it will be automatically
tokenized and tagged by the CoreNLP Parser.
:param sentence: Input sentence to parse
:type sentence: str
:rtype: iter(Tree)
"""
default_properties = {"tokenize.whitespace": "false"}
default_properties.update(properties or {})
return next(
self.raw_parse_sents(
[sentence], properties=default_properties, *args, **kwargs
)
)
def api_call(self, data, properties=None, timeout=60):
default_properties = {
"outputFormat": "json",
"annotators": "tokenize,pos,lemma,ssplit,{parser_annotator}".format(
parser_annotator=self.parser_annotator
),
}
default_properties.update(properties or {})
response = self.session.post(
self.url,
params={"properties": json.dumps(default_properties)},
data=data.encode(self.encoding),
headers={"Content-Type": f"text/plain; charset={self.encoding}"},
timeout=timeout,
)
response.raise_for_status()
return response.json(strict=self.strict_json)
def raw_parse_sents(
self, sentences, verbose=False, properties=None, *args, **kwargs
):
"""Parse multiple sentences.
Takes multiple sentences as a list of strings. Each sentence will be
automatically tokenized and tagged.
:param sentences: Input sentences to parse.
:type sentences: list(str)
:rtype: iter(iter(Tree))
"""
default_properties = {
# Only splits on '\n', never inside the sentence.
"ssplit.eolonly": "true"
}
default_properties.update(properties or {})
"""
for sentence in sentences:
parsed_data = self.api_call(sentence, properties=default_properties)
assert len(parsed_data['sentences']) == 1
for parse in parsed_data['sentences']:
tree = self.make_tree(parse)
yield iter([tree])
"""
parsed_data = self.api_call("\n".join(sentences), properties=default_properties)
for parsed_sent in parsed_data["sentences"]:
tree = self.make_tree(parsed_sent)
yield iter([tree])
def parse_text(self, text, *args, **kwargs):
"""Parse a piece of text.
The text might contain several sentences which will be split by CoreNLP.
:param str text: text to be split.
:returns: an iterable of syntactic structures. # TODO: should it be an iterable of iterables?
"""
parsed_data = self.api_call(text, *args, **kwargs)
for parse in parsed_data["sentences"]:
yield self.make_tree(parse)
def tokenize(self, text, properties=None):
"""Tokenize a string of text.
Skip these tests if CoreNLP is likely not ready.
>>> from nltk.test.setup_fixt import check_jar
>>> check_jar(CoreNLPServer._JAR, env_vars=("CORENLP",), is_regex=True)
The CoreNLP server can be started using the following notation, although
we recommend the `with CoreNLPServer() as server:` context manager notation
to ensure that the server is always stopped.
>>> server = CoreNLPServer()
>>> server.start()
>>> parser = CoreNLPParser(url=server.url)
>>> text = 'Good muffins cost $3.88\\nin New York. Please buy me\\ntwo of them.\\nThanks.'
>>> list(parser.tokenize(text))
['Good', 'muffins', 'cost', '$', '3.88', 'in', 'New', 'York', '.', 'Please', 'buy', 'me', 'two', 'of', 'them', '.', 'Thanks', '.']
>>> s = "The colour of the wall is blue."
>>> list(
... parser.tokenize(
... 'The colour of the wall is blue.',
... properties={'tokenize.options': 'americanize=true'},
... )
... )
['The', 'colour', 'of', 'the', 'wall', 'is', 'blue', '.']
>>> server.stop()
"""
default_properties = {"annotators": "tokenize,ssplit"}
default_properties.update(properties or {})
result = self.api_call(text, properties=default_properties)
for sentence in result["sentences"]:
for token in sentence["tokens"]:
yield token["originalText"] or token["word"]
def tag_sents(self, sentences):
"""
Tag multiple sentences.
Takes multiple sentences as a list where each sentence is a list of
tokens.
:param sentences: Input sentences to tag
:type sentences: list(list(str))
:rtype: list(list(tuple(str, str))
"""
# Converting list(list(str)) -> list(str)
sentences = (" ".join(words) for words in sentences)
return [sentences[0] for sentences in self.raw_tag_sents(sentences)]
def tag(self, sentence: str) -> List[Tuple[str, str]]:
"""
Tag a list of tokens.
:rtype: list(tuple(str, str))
Skip these tests if CoreNLP is likely not ready.
>>> from nltk.test.setup_fixt import check_jar
>>> check_jar(CoreNLPServer._JAR, env_vars=("CORENLP",), is_regex=True)
The CoreNLP server can be started using the following notation, although
we recommend the `with CoreNLPServer() as server:` context manager notation
to ensure that the server is always stopped.
>>> server = CoreNLPServer()
>>> server.start()
>>> parser = CoreNLPParser(url=server.url, tagtype='ner')
>>> tokens = 'Rami Eid is studying at Stony Brook University in NY'.split()
>>> parser.tag(tokens) # doctest: +NORMALIZE_WHITESPACE
[('Rami', 'PERSON'), ('Eid', 'PERSON'), ('is', 'O'), ('studying', 'O'), ('at', 'O'), ('Stony', 'ORGANIZATION'),
('Brook', 'ORGANIZATION'), ('University', 'ORGANIZATION'), ('in', 'O'), ('NY', 'STATE_OR_PROVINCE')]
>>> parser = CoreNLPParser(url=server.url, tagtype='pos')
>>> tokens = "What is the airspeed of an unladen swallow ?".split()
>>> parser.tag(tokens) # doctest: +NORMALIZE_WHITESPACE
[('What', 'WP'), ('is', 'VBZ'), ('the', 'DT'),
('airspeed', 'NN'), ('of', 'IN'), ('an', 'DT'),
('unladen', 'JJ'), ('swallow', 'VB'), ('?', '.')]
>>> server.stop()
"""
return self.tag_sents([sentence])[0]
def raw_tag_sents(self, sentences):
"""
Tag multiple sentences.
Takes multiple sentences as a list where each sentence is a string.
:param sentences: Input sentences to tag
:type sentences: list(str)
:rtype: list(list(list(tuple(str, str)))
"""
default_properties = {
"ssplit.isOneSentence": "true",
"annotators": "tokenize,ssplit,",
}
# Supports only 'pos' or 'ner' tags.
assert self.tagtype in ["pos", "ner"]
default_properties["annotators"] += self.tagtype
for sentence in sentences:
tagged_data = self.api_call(sentence, properties=default_properties)
yield [
[
(token["word"], token[self.tagtype])
for token in tagged_sentence["tokens"]
]
for tagged_sentence in tagged_data["sentences"]
]
class CoreNLPParser(GenericCoreNLPParser):
"""
Skip these tests if CoreNLP is likely not ready.
>>> from nltk.test.setup_fixt import check_jar
>>> check_jar(CoreNLPServer._JAR, env_vars=("CORENLP",), is_regex=True)
The recommended usage of `CoreNLPParser` is using the context manager notation:
>>> with CoreNLPServer() as server:
... parser = CoreNLPParser(url=server.url)
... next(
... parser.raw_parse('The quick brown fox jumps over the lazy dog.')
... ).pretty_print() # doctest: +NORMALIZE_WHITESPACE
ROOT
|
S
_______________|__________________________
| VP |
| _________|___ |
| | PP |
| | ________|___ |
NP | | NP |
____|__________ | | _______|____ |
DT JJ JJ NN VBZ IN DT JJ NN .
| | | | | | | | | |
The quick brown fox jumps over the lazy dog .
Alternatively, the server can be started using the following notation.
Note that `CoreNLPServer` does not need to be used if the CoreNLP server is started
outside of Python.
>>> server = CoreNLPServer()
>>> server.start()
>>> parser = CoreNLPParser(url=server.url)
>>> (parse_fox, ), (parse_wolf, ) = parser.raw_parse_sents(
... [
... 'The quick brown fox jumps over the lazy dog.',
... 'The quick grey wolf jumps over the lazy fox.',
... ]
... )
>>> parse_fox.pretty_print() # doctest: +NORMALIZE_WHITESPACE
ROOT
|
S
_______________|__________________________
| VP |
| _________|___ |
| | PP |
| | ________|___ |
NP | | NP |
____|__________ | | _______|____ |
DT JJ JJ NN VBZ IN DT JJ NN .
| | | | | | | | | |
The quick brown fox jumps over the lazy dog .
>>> parse_wolf.pretty_print() # doctest: +NORMALIZE_WHITESPACE
ROOT
|
S
_______________|__________________________
| VP |
| _________|___ |
| | PP |
| | ________|___ |
NP | | NP |
____|_________ | | _______|____ |
DT JJ JJ NN VBZ IN DT JJ NN .
| | | | | | | | | |
The quick grey wolf jumps over the lazy fox .
>>> (parse_dog, ), (parse_friends, ) = parser.parse_sents(
... [
... "I 'm a dog".split(),
... "This is my friends ' cat ( the tabby )".split(),
... ]
... )
>>> parse_dog.pretty_print() # doctest: +NORMALIZE_WHITESPACE
ROOT
|
S
_______|____
| VP
| ________|___
NP | NP
| | ___|___
PRP VBP DT NN
| | | |
I 'm a dog
>>> parse_friends.pretty_print() # doctest: +NORMALIZE_WHITESPACE
ROOT
|
S
____|___________
| VP
| ___________|_____________
| | NP
| | _______|________________________
| | NP | | |
| | _____|_______ | | |
NP | NP | | NP |
| | ______|_________ | | ___|____ |
DT VBZ PRP$ NNS POS NN -LRB- DT NN -RRB-
| | | | | | | | | |
This is my friends ' cat -LRB- the tabby -RRB-
>>> parse_john, parse_mary, = parser.parse_text(
... 'John loves Mary. Mary walks.'
... )
>>> parse_john.pretty_print() # doctest: +NORMALIZE_WHITESPACE
ROOT
|
S
_____|_____________
| VP |
| ____|___ |
NP | NP |
| | | |
NNP VBZ NNP .
| | | |
John loves Mary .
>>> parse_mary.pretty_print() # doctest: +NORMALIZE_WHITESPACE
ROOT
|
S
_____|____
NP VP |
| | |
NNP VBZ .
| | |
Mary walks .
Special cases
>>> next(
... parser.raw_parse(
... 'NASIRIYA, Iraq—Iraqi doctors who treated former prisoner of war '
... 'Jessica Lynch have angrily dismissed claims made in her biography '
... 'that she was raped by her Iraqi captors.'
... )
... ).height()
14
>>> next(
... parser.raw_parse(
... "The broader Standard & Poor's 500 Index <.SPX> was 0.46 points lower, or "
... '0.05 percent, at 997.02.'
... )
... ).height()
11
>>> server.stop()
"""
_OUTPUT_FORMAT = "penn"
parser_annotator = "parse"
def make_tree(self, result):
return Tree.fromstring(result["parse"])
class CoreNLPDependencyParser(GenericCoreNLPParser):
"""Dependency parser.
Skip these tests if CoreNLP is likely not ready.
>>> from nltk.test.setup_fixt import check_jar
>>> check_jar(CoreNLPServer._JAR, env_vars=("CORENLP",), is_regex=True)
The recommended usage of `CoreNLPParser` is using the context manager notation:
>>> with CoreNLPServer() as server:
... dep_parser = CoreNLPDependencyParser(url=server.url)
... parse, = dep_parser.raw_parse(
... 'The quick brown fox jumps over the lazy dog.'
... )
... print(parse.to_conll(4)) # doctest: +NORMALIZE_WHITESPACE
The DT 4 det
quick JJ 4 amod
brown JJ 4 amod
fox NN 5 nsubj
jumps VBZ 0 ROOT
over IN 9 case
the DT 9 det
lazy JJ 9 amod
dog NN 5 obl
. . 5 punct
Alternatively, the server can be started using the following notation.
Note that `CoreNLPServer` does not need to be used if the CoreNLP server is started
outside of Python.
>>> server = CoreNLPServer()
>>> server.start()
>>> dep_parser = CoreNLPDependencyParser(url=server.url)
>>> parse, = dep_parser.raw_parse('The quick brown fox jumps over the lazy dog.')
>>> print(parse.tree()) # doctest: +NORMALIZE_WHITESPACE
(jumps (fox The quick brown) (dog over the lazy) .)
>>> for governor, dep, dependent in parse.triples():
... print(governor, dep, dependent) # doctest: +NORMALIZE_WHITESPACE
('jumps', 'VBZ') nsubj ('fox', 'NN')
('fox', 'NN') det ('The', 'DT')
('fox', 'NN') amod ('quick', 'JJ')
('fox', 'NN') amod ('brown', 'JJ')
('jumps', 'VBZ') obl ('dog', 'NN')
('dog', 'NN') case ('over', 'IN')
('dog', 'NN') det ('the', 'DT')
('dog', 'NN') amod ('lazy', 'JJ')
('jumps', 'VBZ') punct ('.', '.')
>>> (parse_fox, ), (parse_dog, ) = dep_parser.raw_parse_sents(
... [
... 'The quick brown fox jumps over the lazy dog.',
... 'The quick grey wolf jumps over the lazy fox.',
... ]
... )
>>> print(parse_fox.to_conll(4)) # doctest: +NORMALIZE_WHITESPACE
The DT 4 det
quick JJ 4 amod
brown JJ 4 amod
fox NN 5 nsubj
jumps VBZ 0 ROOT
over IN 9 case
the DT 9 det
lazy JJ 9 amod
dog NN 5 obl
. . 5 punct
>>> print(parse_dog.to_conll(4)) # doctest: +NORMALIZE_WHITESPACE
The DT 4 det
quick JJ 4 amod
grey JJ 4 amod
wolf NN 5 nsubj
jumps VBZ 0 ROOT
over IN 9 case
the DT 9 det
lazy JJ 9 amod
fox NN 5 obl
. . 5 punct
>>> (parse_dog, ), (parse_friends, ) = dep_parser.parse_sents(
... [
... "I 'm a dog".split(),
... "This is my friends ' cat ( the tabby )".split(),
... ]
... )
>>> print(parse_dog.to_conll(4)) # doctest: +NORMALIZE_WHITESPACE
I PRP 4 nsubj
'm VBP 4 cop
a DT 4 det
dog NN 0 ROOT
>>> print(parse_friends.to_conll(4)) # doctest: +NORMALIZE_WHITESPACE
This DT 6 nsubj
is VBZ 6 cop
my PRP$ 4 nmod:poss
friends NNS 6 nmod:poss
' POS 4 case
cat NN 0 ROOT
( -LRB- 9 punct
the DT 9 det
tabby NN 6 dep
) -RRB- 9 punct
>>> parse_john, parse_mary, = dep_parser.parse_text(
... 'John loves Mary. Mary walks.'
... )
>>> print(parse_john.to_conll(4)) # doctest: +NORMALIZE_WHITESPACE
John NNP 2 nsubj
loves VBZ 0 ROOT
Mary NNP 2 obj
. . 2 punct
>>> print(parse_mary.to_conll(4)) # doctest: +NORMALIZE_WHITESPACE
Mary NNP 2 nsubj
walks VBZ 0 ROOT
. . 2 punct
Special cases
Non-breaking space inside of a token.
>>> len(
... next(
... dep_parser.raw_parse(
... 'Anhalt said children typically treat a 20-ounce soda bottle as one '
... 'serving, while it actually contains 2 1/2 servings.'
... )
... ).nodes
... )
23
Phone numbers.
>>> len(
... next(
... dep_parser.raw_parse('This is not going to crash: 01 111 555.')
... ).nodes
... )
10
>>> print(
... next(
... dep_parser.raw_parse('The underscore _ should not simply disappear.')
... ).to_conll(4)
... ) # doctest: +NORMALIZE_WHITESPACE
The DT 2 det
underscore NN 7 nsubj
_ NFP 7 punct
should MD 7 aux
not RB 7 advmod
simply RB 7 advmod
disappear VB 0 ROOT
. . 7 punct
>>> print(
... next(
... dep_parser.raw_parse(
... 'for all of its insights into the dream world of teen life , and its electronic expression through '
... 'cyber culture , the film gives no quarter to anyone seeking to pull a cohesive story out of its 2 '
... '1/2-hour running time .'
... )
... ).to_conll(4)
... ) # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
for IN 2 case
all DT 24 obl
of IN 5 case
its PRP$ 5 nmod:poss
insights NNS 2 nmod
into IN 9 case
the DT 9 det
dream NN 9 compound
world NN 5 nmod
of IN 12 case
teen NN 12 compound
...
>>> server.stop()
"""
_OUTPUT_FORMAT = "conll2007"
parser_annotator = "depparse"
def make_tree(self, result):
return DependencyGraph(
(
" ".join(n_items[1:]) # NLTK expects an iterable of strings...
for n_items in sorted(transform(result))
),
cell_separator=" ", # To make sure that a non-breaking space is kept inside of a token.
)
def transform(sentence):
for dependency in sentence["basicDependencies"]:
dependent_index = dependency["dependent"]
token = sentence["tokens"][dependent_index - 1]
# Return values that we don't know as '_'. Also, consider tag and ctag
# to be equal.
yield (
dependent_index,
"_",
token["word"],
token["lemma"],
token["pos"],
token["pos"],
"_",
str(dependency["governor"]),
dependency["dep"],
"_",
"_",
)
|