Spaces:
Sleeping
Sleeping
File size: 16,569 Bytes
d916065 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
# Natural Language Toolkit: Ngram Association Measures
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Joel Nothman <[email protected]>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
"""
Provides scoring functions for a number of association measures through a
generic, abstract implementation in ``NgramAssocMeasures``, and n-specific
``BigramAssocMeasures`` and ``TrigramAssocMeasures``.
"""
import math as _math
from abc import ABCMeta, abstractmethod
from functools import reduce
_log2 = lambda x: _math.log2(x)
_ln = _math.log
_product = lambda s: reduce(lambda x, y: x * y, s)
_SMALL = 1e-20
try:
from scipy.stats import fisher_exact
except ImportError:
def fisher_exact(*_args, **_kwargs):
raise NotImplementedError
### Indices to marginals arguments:
NGRAM = 0
"""Marginals index for the ngram count"""
UNIGRAMS = -2
"""Marginals index for a tuple of each unigram count"""
TOTAL = -1
"""Marginals index for the number of words in the data"""
class NgramAssocMeasures(metaclass=ABCMeta):
"""
An abstract class defining a collection of generic association measures.
Each public method returns a score, taking the following arguments::
score_fn(count_of_ngram,
(count_of_n-1gram_1, ..., count_of_n-1gram_j),
(count_of_n-2gram_1, ..., count_of_n-2gram_k),
...,
(count_of_1gram_1, ..., count_of_1gram_n),
count_of_total_words)
See ``BigramAssocMeasures`` and ``TrigramAssocMeasures``
Inheriting classes should define a property _n, and a method _contingency
which calculates contingency values from marginals in order for all
association measures defined here to be usable.
"""
_n = 0
@staticmethod
@abstractmethod
def _contingency(*marginals):
"""Calculates values of a contingency table from marginal values."""
raise NotImplementedError(
"The contingency table is not available" "in the general ngram case"
)
@staticmethod
@abstractmethod
def _marginals(*contingency):
"""Calculates values of contingency table marginals from its values."""
raise NotImplementedError(
"The contingency table is not available" "in the general ngram case"
)
@classmethod
def _expected_values(cls, cont):
"""Calculates expected values for a contingency table."""
n_all = sum(cont)
bits = [1 << i for i in range(cls._n)]
# For each contingency table cell
for i in range(len(cont)):
# Yield the expected value
yield (
_product(
sum(cont[x] for x in range(2**cls._n) if (x & j) == (i & j))
for j in bits
)
/ (n_all ** (cls._n - 1))
)
@staticmethod
def raw_freq(*marginals):
"""Scores ngrams by their frequency"""
return marginals[NGRAM] / marginals[TOTAL]
@classmethod
def student_t(cls, *marginals):
"""Scores ngrams using Student's t test with independence hypothesis
for unigrams, as in Manning and Schutze 5.3.1.
"""
return (
marginals[NGRAM]
- _product(marginals[UNIGRAMS]) / (marginals[TOTAL] ** (cls._n - 1))
) / (marginals[NGRAM] + _SMALL) ** 0.5
@classmethod
def chi_sq(cls, *marginals):
"""Scores ngrams using Pearson's chi-square as in Manning and Schutze
5.3.3.
"""
cont = cls._contingency(*marginals)
exps = cls._expected_values(cont)
return sum((obs - exp) ** 2 / (exp + _SMALL) for obs, exp in zip(cont, exps))
@staticmethod
def mi_like(*marginals, **kwargs):
"""Scores ngrams using a variant of mutual information. The keyword
argument power sets an exponent (default 3) for the numerator. No
logarithm of the result is calculated.
"""
return marginals[NGRAM] ** kwargs.get("power", 3) / _product(
marginals[UNIGRAMS]
)
@classmethod
def pmi(cls, *marginals):
"""Scores ngrams by pointwise mutual information, as in Manning and
Schutze 5.4.
"""
return _log2(marginals[NGRAM] * marginals[TOTAL] ** (cls._n - 1)) - _log2(
_product(marginals[UNIGRAMS])
)
@classmethod
def likelihood_ratio(cls, *marginals):
"""Scores ngrams using likelihood ratios as in Manning and Schutze 5.3.4."""
cont = cls._contingency(*marginals)
return 2 * sum(
obs * _ln(obs / (exp + _SMALL) + _SMALL)
for obs, exp in zip(cont, cls._expected_values(cont))
)
@classmethod
def poisson_stirling(cls, *marginals):
"""Scores ngrams using the Poisson-Stirling measure."""
exp = _product(marginals[UNIGRAMS]) / (marginals[TOTAL] ** (cls._n - 1))
return marginals[NGRAM] * (_log2(marginals[NGRAM] / exp) - 1)
@classmethod
def jaccard(cls, *marginals):
"""Scores ngrams using the Jaccard index."""
cont = cls._contingency(*marginals)
return cont[0] / sum(cont[:-1])
class BigramAssocMeasures(NgramAssocMeasures):
"""
A collection of bigram association measures. Each association measure
is provided as a function with three arguments::
bigram_score_fn(n_ii, (n_ix, n_xi), n_xx)
The arguments constitute the marginals of a contingency table, counting
the occurrences of particular events in a corpus. The letter i in the
suffix refers to the appearance of the word in question, while x indicates
the appearance of any word. Thus, for example:
- n_ii counts ``(w1, w2)``, i.e. the bigram being scored
- n_ix counts ``(w1, *)``
- n_xi counts ``(*, w2)``
- n_xx counts ``(*, *)``, i.e. any bigram
This may be shown with respect to a contingency table::
w1 ~w1
------ ------
w2 | n_ii | n_oi | = n_xi
------ ------
~w2 | n_io | n_oo |
------ ------
= n_ix TOTAL = n_xx
"""
_n = 2
@staticmethod
def _contingency(n_ii, n_ix_xi_tuple, n_xx):
"""Calculates values of a bigram contingency table from marginal values."""
(n_ix, n_xi) = n_ix_xi_tuple
n_oi = n_xi - n_ii
n_io = n_ix - n_ii
return (n_ii, n_oi, n_io, n_xx - n_ii - n_oi - n_io)
@staticmethod
def _marginals(n_ii, n_oi, n_io, n_oo):
"""Calculates values of contingency table marginals from its values."""
return (n_ii, (n_oi + n_ii, n_io + n_ii), n_oo + n_oi + n_io + n_ii)
@staticmethod
def _expected_values(cont):
"""Calculates expected values for a contingency table."""
n_xx = sum(cont)
# For each contingency table cell
for i in range(4):
yield (cont[i] + cont[i ^ 1]) * (cont[i] + cont[i ^ 2]) / n_xx
@classmethod
def phi_sq(cls, *marginals):
"""Scores bigrams using phi-square, the square of the Pearson correlation
coefficient.
"""
n_ii, n_io, n_oi, n_oo = cls._contingency(*marginals)
return (n_ii * n_oo - n_io * n_oi) ** 2 / (
(n_ii + n_io) * (n_ii + n_oi) * (n_io + n_oo) * (n_oi + n_oo)
)
@classmethod
def chi_sq(cls, n_ii, n_ix_xi_tuple, n_xx):
"""Scores bigrams using chi-square, i.e. phi-sq multiplied by the number
of bigrams, as in Manning and Schutze 5.3.3.
"""
(n_ix, n_xi) = n_ix_xi_tuple
return n_xx * cls.phi_sq(n_ii, (n_ix, n_xi), n_xx)
@classmethod
def fisher(cls, *marginals):
"""Scores bigrams using Fisher's Exact Test (Pedersen 1996). Less
sensitive to small counts than PMI or Chi Sq, but also more expensive
to compute. Requires scipy.
"""
n_ii, n_io, n_oi, n_oo = cls._contingency(*marginals)
(odds, pvalue) = fisher_exact([[n_ii, n_io], [n_oi, n_oo]], alternative="less")
return pvalue
@staticmethod
def dice(n_ii, n_ix_xi_tuple, n_xx):
"""Scores bigrams using Dice's coefficient."""
(n_ix, n_xi) = n_ix_xi_tuple
return 2 * n_ii / (n_ix + n_xi)
class TrigramAssocMeasures(NgramAssocMeasures):
"""
A collection of trigram association measures. Each association measure
is provided as a function with four arguments::
trigram_score_fn(n_iii,
(n_iix, n_ixi, n_xii),
(n_ixx, n_xix, n_xxi),
n_xxx)
The arguments constitute the marginals of a contingency table, counting
the occurrences of particular events in a corpus. The letter i in the
suffix refers to the appearance of the word in question, while x indicates
the appearance of any word. Thus, for example:
- n_iii counts ``(w1, w2, w3)``, i.e. the trigram being scored
- n_ixx counts ``(w1, *, *)``
- n_xxx counts ``(*, *, *)``, i.e. any trigram
"""
_n = 3
@staticmethod
def _contingency(n_iii, n_iix_tuple, n_ixx_tuple, n_xxx):
"""Calculates values of a trigram contingency table (or cube) from
marginal values.
>>> TrigramAssocMeasures._contingency(1, (1, 1, 1), (1, 73, 1), 2000)
(1, 0, 0, 0, 0, 72, 0, 1927)
"""
(n_iix, n_ixi, n_xii) = n_iix_tuple
(n_ixx, n_xix, n_xxi) = n_ixx_tuple
n_oii = n_xii - n_iii
n_ioi = n_ixi - n_iii
n_iio = n_iix - n_iii
n_ooi = n_xxi - n_iii - n_oii - n_ioi
n_oio = n_xix - n_iii - n_oii - n_iio
n_ioo = n_ixx - n_iii - n_ioi - n_iio
n_ooo = n_xxx - n_iii - n_oii - n_ioi - n_iio - n_ooi - n_oio - n_ioo
return (n_iii, n_oii, n_ioi, n_ooi, n_iio, n_oio, n_ioo, n_ooo)
@staticmethod
def _marginals(*contingency):
"""Calculates values of contingency table marginals from its values.
>>> TrigramAssocMeasures._marginals(1, 0, 0, 0, 0, 72, 0, 1927)
(1, (1, 1, 1), (1, 73, 1), 2000)
"""
n_iii, n_oii, n_ioi, n_ooi, n_iio, n_oio, n_ioo, n_ooo = contingency
return (
n_iii,
(n_iii + n_iio, n_iii + n_ioi, n_iii + n_oii),
(
n_iii + n_ioi + n_iio + n_ioo,
n_iii + n_oii + n_iio + n_oio,
n_iii + n_oii + n_ioi + n_ooi,
),
sum(contingency),
)
class QuadgramAssocMeasures(NgramAssocMeasures):
"""
A collection of quadgram association measures. Each association measure
is provided as a function with five arguments::
trigram_score_fn(n_iiii,
(n_iiix, n_iixi, n_ixii, n_xiii),
(n_iixx, n_ixix, n_ixxi, n_xixi, n_xxii, n_xiix),
(n_ixxx, n_xixx, n_xxix, n_xxxi),
n_all)
The arguments constitute the marginals of a contingency table, counting
the occurrences of particular events in a corpus. The letter i in the
suffix refers to the appearance of the word in question, while x indicates
the appearance of any word. Thus, for example:
- n_iiii counts ``(w1, w2, w3, w4)``, i.e. the quadgram being scored
- n_ixxi counts ``(w1, *, *, w4)``
- n_xxxx counts ``(*, *, *, *)``, i.e. any quadgram
"""
_n = 4
@staticmethod
def _contingency(n_iiii, n_iiix_tuple, n_iixx_tuple, n_ixxx_tuple, n_xxxx):
"""Calculates values of a quadgram contingency table from
marginal values.
"""
(n_iiix, n_iixi, n_ixii, n_xiii) = n_iiix_tuple
(n_iixx, n_ixix, n_ixxi, n_xixi, n_xxii, n_xiix) = n_iixx_tuple
(n_ixxx, n_xixx, n_xxix, n_xxxi) = n_ixxx_tuple
n_oiii = n_xiii - n_iiii
n_ioii = n_ixii - n_iiii
n_iioi = n_iixi - n_iiii
n_ooii = n_xxii - n_iiii - n_oiii - n_ioii
n_oioi = n_xixi - n_iiii - n_oiii - n_iioi
n_iooi = n_ixxi - n_iiii - n_ioii - n_iioi
n_oooi = n_xxxi - n_iiii - n_oiii - n_ioii - n_iioi - n_ooii - n_iooi - n_oioi
n_iiio = n_iiix - n_iiii
n_oiio = n_xiix - n_iiii - n_oiii - n_iiio
n_ioio = n_ixix - n_iiii - n_ioii - n_iiio
n_ooio = n_xxix - n_iiii - n_oiii - n_ioii - n_iiio - n_ooii - n_ioio - n_oiio
n_iioo = n_iixx - n_iiii - n_iioi - n_iiio
n_oioo = n_xixx - n_iiii - n_oiii - n_iioi - n_iiio - n_oioi - n_oiio - n_iioo
n_iooo = n_ixxx - n_iiii - n_ioii - n_iioi - n_iiio - n_iooi - n_iioo - n_ioio
n_oooo = (
n_xxxx
- n_iiii
- n_oiii
- n_ioii
- n_iioi
- n_ooii
- n_oioi
- n_iooi
- n_oooi
- n_iiio
- n_oiio
- n_ioio
- n_ooio
- n_iioo
- n_oioo
- n_iooo
)
return (
n_iiii,
n_oiii,
n_ioii,
n_ooii,
n_iioi,
n_oioi,
n_iooi,
n_oooi,
n_iiio,
n_oiio,
n_ioio,
n_ooio,
n_iioo,
n_oioo,
n_iooo,
n_oooo,
)
@staticmethod
def _marginals(*contingency):
"""Calculates values of contingency table marginals from its values.
QuadgramAssocMeasures._marginals(1, 0, 2, 46, 552, 825, 2577, 34967, 1, 0, 2, 48, 7250, 9031, 28585, 356653)
(1, (2, 553, 3, 1), (7804, 6, 3132, 1378, 49, 2), (38970, 17660, 100, 38970), 440540)
"""
(
n_iiii,
n_oiii,
n_ioii,
n_ooii,
n_iioi,
n_oioi,
n_iooi,
n_oooi,
n_iiio,
n_oiio,
n_ioio,
n_ooio,
n_iioo,
n_oioo,
n_iooo,
n_oooo,
) = contingency
n_iiix = n_iiii + n_iiio
n_iixi = n_iiii + n_iioi
n_ixii = n_iiii + n_ioii
n_xiii = n_iiii + n_oiii
n_iixx = n_iiii + n_iioi + n_iiio + n_iioo
n_ixix = n_iiii + n_ioii + n_iiio + n_ioio
n_ixxi = n_iiii + n_ioii + n_iioi + n_iooi
n_xixi = n_iiii + n_oiii + n_iioi + n_oioi
n_xxii = n_iiii + n_oiii + n_ioii + n_ooii
n_xiix = n_iiii + n_oiii + n_iiio + n_oiio
n_ixxx = n_iiii + n_ioii + n_iioi + n_iiio + n_iooi + n_iioo + n_ioio + n_iooo
n_xixx = n_iiii + n_oiii + n_iioi + n_iiio + n_oioi + n_oiio + n_iioo + n_oioo
n_xxix = n_iiii + n_oiii + n_ioii + n_iiio + n_ooii + n_ioio + n_oiio + n_ooio
n_xxxi = n_iiii + n_oiii + n_ioii + n_iioi + n_ooii + n_iooi + n_oioi + n_oooi
n_all = sum(contingency)
return (
n_iiii,
(n_iiix, n_iixi, n_ixii, n_xiii),
(n_iixx, n_ixix, n_ixxi, n_xixi, n_xxii, n_xiix),
(n_ixxx, n_xixx, n_xxix, n_xxxi),
n_all,
)
class ContingencyMeasures:
"""Wraps NgramAssocMeasures classes such that the arguments of association
measures are contingency table values rather than marginals.
"""
def __init__(self, measures):
"""Constructs a ContingencyMeasures given a NgramAssocMeasures class"""
self.__class__.__name__ = "Contingency" + measures.__class__.__name__
for k in dir(measures):
if k.startswith("__"):
continue
v = getattr(measures, k)
if not k.startswith("_"):
v = self._make_contingency_fn(measures, v)
setattr(self, k, v)
@staticmethod
def _make_contingency_fn(measures, old_fn):
"""From an association measure function, produces a new function which
accepts contingency table values as its arguments.
"""
def res(*contingency):
return old_fn(*measures._marginals(*contingency))
res.__doc__ = old_fn.__doc__
res.__name__ = old_fn.__name__
return res
|