Spaces:
Sleeping
Sleeping
File size: 19,560 Bytes
d916065 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 |
# Natural Language Toolkit: Classifier Interface
#
# Author: Ewan Klein <[email protected]>
# Dan Garrette <[email protected]>
#
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
"""
Interfaces and base classes for theorem provers and model builders.
``Prover`` is a standard interface for a theorem prover which tries to prove a goal from a
list of assumptions.
``ModelBuilder`` is a standard interface for a model builder. Given just a set of assumptions.
the model builder tries to build a model for the assumptions. Given a set of assumptions and a
goal *G*, the model builder tries to find a counter-model, in the sense of a model that will satisfy
the assumptions plus the negation of *G*.
"""
import threading
import time
from abc import ABCMeta, abstractmethod
class Prover(metaclass=ABCMeta):
"""
Interface for trying to prove a goal from assumptions. Both the goal and
the assumptions are constrained to be formulas of ``logic.Expression``.
"""
def prove(self, goal=None, assumptions=None, verbose=False):
"""
:return: Whether the proof was successful or not.
:rtype: bool
"""
return self._prove(goal, assumptions, verbose)[0]
@abstractmethod
def _prove(self, goal=None, assumptions=None, verbose=False):
"""
:return: Whether the proof was successful or not, along with the proof
:rtype: tuple: (bool, str)
"""
class ModelBuilder(metaclass=ABCMeta):
"""
Interface for trying to build a model of set of formulas.
Open formulas are assumed to be universally quantified.
Both the goal and the assumptions are constrained to be formulas
of ``logic.Expression``.
"""
def build_model(self, goal=None, assumptions=None, verbose=False):
"""
Perform the actual model building.
:return: Whether a model was generated
:rtype: bool
"""
return self._build_model(goal, assumptions, verbose)[0]
@abstractmethod
def _build_model(self, goal=None, assumptions=None, verbose=False):
"""
Perform the actual model building.
:return: Whether a model was generated, and the model itself
:rtype: tuple(bool, sem.Valuation)
"""
class TheoremToolCommand(metaclass=ABCMeta):
"""
This class holds a goal and a list of assumptions to be used in proving
or model building.
"""
@abstractmethod
def add_assumptions(self, new_assumptions):
"""
Add new assumptions to the assumption list.
:param new_assumptions: new assumptions
:type new_assumptions: list(sem.Expression)
"""
@abstractmethod
def retract_assumptions(self, retracted, debug=False):
"""
Retract assumptions from the assumption list.
:param debug: If True, give warning when ``retracted`` is not present on
assumptions list.
:type debug: bool
:param retracted: assumptions to be retracted
:type retracted: list(sem.Expression)
"""
@abstractmethod
def assumptions(self):
"""
List the current assumptions.
:return: list of ``Expression``
"""
@abstractmethod
def goal(self):
"""
Return the goal
:return: ``Expression``
"""
@abstractmethod
def print_assumptions(self):
"""
Print the list of the current assumptions.
"""
class ProverCommand(TheoremToolCommand):
"""
This class holds a ``Prover``, a goal, and a list of assumptions. When
prove() is called, the ``Prover`` is executed with the goal and assumptions.
"""
@abstractmethod
def prove(self, verbose=False):
"""
Perform the actual proof.
"""
@abstractmethod
def proof(self, simplify=True):
"""
Return the proof string
:param simplify: bool simplify the proof?
:return: str
"""
@abstractmethod
def get_prover(self):
"""
Return the prover object
:return: ``Prover``
"""
class ModelBuilderCommand(TheoremToolCommand):
"""
This class holds a ``ModelBuilder``, a goal, and a list of assumptions.
When build_model() is called, the ``ModelBuilder`` is executed with the goal
and assumptions.
"""
@abstractmethod
def build_model(self, verbose=False):
"""
Perform the actual model building.
:return: A model if one is generated; None otherwise.
:rtype: sem.Valuation
"""
@abstractmethod
def model(self, format=None):
"""
Return a string representation of the model
:param simplify: bool simplify the proof?
:return: str
"""
@abstractmethod
def get_model_builder(self):
"""
Return the model builder object
:return: ``ModelBuilder``
"""
class BaseTheoremToolCommand(TheoremToolCommand):
"""
This class holds a goal and a list of assumptions to be used in proving
or model building.
"""
def __init__(self, goal=None, assumptions=None):
"""
:param goal: Input expression to prove
:type goal: sem.Expression
:param assumptions: Input expressions to use as assumptions in
the proof.
:type assumptions: list(sem.Expression)
"""
self._goal = goal
if not assumptions:
self._assumptions = []
else:
self._assumptions = list(assumptions)
self._result = None
"""A holder for the result, to prevent unnecessary re-proving"""
def add_assumptions(self, new_assumptions):
"""
Add new assumptions to the assumption list.
:param new_assumptions: new assumptions
:type new_assumptions: list(sem.Expression)
"""
self._assumptions.extend(new_assumptions)
self._result = None
def retract_assumptions(self, retracted, debug=False):
"""
Retract assumptions from the assumption list.
:param debug: If True, give warning when ``retracted`` is not present on
assumptions list.
:type debug: bool
:param retracted: assumptions to be retracted
:type retracted: list(sem.Expression)
"""
retracted = set(retracted)
result_list = list(filter(lambda a: a not in retracted, self._assumptions))
if debug and result_list == self._assumptions:
print(Warning("Assumptions list has not been changed:"))
self.print_assumptions()
self._assumptions = result_list
self._result = None
def assumptions(self):
"""
List the current assumptions.
:return: list of ``Expression``
"""
return self._assumptions
def goal(self):
"""
Return the goal
:return: ``Expression``
"""
return self._goal
def print_assumptions(self):
"""
Print the list of the current assumptions.
"""
for a in self.assumptions():
print(a)
class BaseProverCommand(BaseTheoremToolCommand, ProverCommand):
"""
This class holds a ``Prover``, a goal, and a list of assumptions. When
prove() is called, the ``Prover`` is executed with the goal and assumptions.
"""
def __init__(self, prover, goal=None, assumptions=None):
"""
:param prover: The theorem tool to execute with the assumptions
:type prover: Prover
:see: ``BaseTheoremToolCommand``
"""
self._prover = prover
"""The theorem tool to execute with the assumptions"""
BaseTheoremToolCommand.__init__(self, goal, assumptions)
self._proof = None
def prove(self, verbose=False):
"""
Perform the actual proof. Store the result to prevent unnecessary
re-proving.
"""
if self._result is None:
self._result, self._proof = self._prover._prove(
self.goal(), self.assumptions(), verbose
)
return self._result
def proof(self, simplify=True):
"""
Return the proof string
:param simplify: bool simplify the proof?
:return: str
"""
if self._result is None:
raise LookupError("You have to call prove() first to get a proof!")
else:
return self.decorate_proof(self._proof, simplify)
def decorate_proof(self, proof_string, simplify=True):
"""
Modify and return the proof string
:param proof_string: str the proof to decorate
:param simplify: bool simplify the proof?
:return: str
"""
return proof_string
def get_prover(self):
return self._prover
class BaseModelBuilderCommand(BaseTheoremToolCommand, ModelBuilderCommand):
"""
This class holds a ``ModelBuilder``, a goal, and a list of assumptions. When
build_model() is called, the ``ModelBuilder`` is executed with the goal and
assumptions.
"""
def __init__(self, modelbuilder, goal=None, assumptions=None):
"""
:param modelbuilder: The theorem tool to execute with the assumptions
:type modelbuilder: ModelBuilder
:see: ``BaseTheoremToolCommand``
"""
self._modelbuilder = modelbuilder
"""The theorem tool to execute with the assumptions"""
BaseTheoremToolCommand.__init__(self, goal, assumptions)
self._model = None
def build_model(self, verbose=False):
"""
Attempt to build a model. Store the result to prevent unnecessary
re-building.
"""
if self._result is None:
self._result, self._model = self._modelbuilder._build_model(
self.goal(), self.assumptions(), verbose
)
return self._result
def model(self, format=None):
"""
Return a string representation of the model
:param simplify: bool simplify the proof?
:return: str
"""
if self._result is None:
raise LookupError("You have to call build_model() first to " "get a model!")
else:
return self._decorate_model(self._model, format)
def _decorate_model(self, valuation_str, format=None):
"""
:param valuation_str: str with the model builder's output
:param format: str indicating the format for displaying
:return: str
"""
return valuation_str
def get_model_builder(self):
return self._modelbuilder
class TheoremToolCommandDecorator(TheoremToolCommand):
"""
A base decorator for the ``ProverCommandDecorator`` and
``ModelBuilderCommandDecorator`` classes from which decorators can extend.
"""
def __init__(self, command):
"""
:param command: ``TheoremToolCommand`` to decorate
"""
self._command = command
# The decorator has its own versions of 'result' different from the
# underlying command
self._result = None
def assumptions(self):
return self._command.assumptions()
def goal(self):
return self._command.goal()
def add_assumptions(self, new_assumptions):
self._command.add_assumptions(new_assumptions)
self._result = None
def retract_assumptions(self, retracted, debug=False):
self._command.retract_assumptions(retracted, debug)
self._result = None
def print_assumptions(self):
self._command.print_assumptions()
class ProverCommandDecorator(TheoremToolCommandDecorator, ProverCommand):
"""
A base decorator for the ``ProverCommand`` class from which other
prover command decorators can extend.
"""
def __init__(self, proverCommand):
"""
:param proverCommand: ``ProverCommand`` to decorate
"""
TheoremToolCommandDecorator.__init__(self, proverCommand)
# The decorator has its own versions of 'result' and 'proof'
# because they may be different from the underlying command
self._proof = None
def prove(self, verbose=False):
if self._result is None:
prover = self.get_prover()
self._result, self._proof = prover._prove(
self.goal(), self.assumptions(), verbose
)
return self._result
def proof(self, simplify=True):
"""
Return the proof string
:param simplify: bool simplify the proof?
:return: str
"""
if self._result is None:
raise LookupError("You have to call prove() first to get a proof!")
else:
return self.decorate_proof(self._proof, simplify)
def decorate_proof(self, proof_string, simplify=True):
"""
Modify and return the proof string
:param proof_string: str the proof to decorate
:param simplify: bool simplify the proof?
:return: str
"""
return self._command.decorate_proof(proof_string, simplify)
def get_prover(self):
return self._command.get_prover()
class ModelBuilderCommandDecorator(TheoremToolCommandDecorator, ModelBuilderCommand):
"""
A base decorator for the ``ModelBuilderCommand`` class from which other
prover command decorators can extend.
"""
def __init__(self, modelBuilderCommand):
"""
:param modelBuilderCommand: ``ModelBuilderCommand`` to decorate
"""
TheoremToolCommandDecorator.__init__(self, modelBuilderCommand)
# The decorator has its own versions of 'result' and 'valuation'
# because they may be different from the underlying command
self._model = None
def build_model(self, verbose=False):
"""
Attempt to build a model. Store the result to prevent unnecessary
re-building.
"""
if self._result is None:
modelbuilder = self.get_model_builder()
self._result, self._model = modelbuilder._build_model(
self.goal(), self.assumptions(), verbose
)
return self._result
def model(self, format=None):
"""
Return a string representation of the model
:param simplify: bool simplify the proof?
:return: str
"""
if self._result is None:
raise LookupError("You have to call build_model() first to " "get a model!")
else:
return self._decorate_model(self._model, format)
def _decorate_model(self, valuation_str, format=None):
"""
Modify and return the proof string
:param valuation_str: str with the model builder's output
:param format: str indicating the format for displaying
:return: str
"""
return self._command._decorate_model(valuation_str, format)
def get_model_builder(self):
return self._command.get_prover()
class ParallelProverBuilder(Prover, ModelBuilder):
"""
This class stores both a prover and a model builder and when either
prove() or build_model() is called, then both theorem tools are run in
parallel. Whichever finishes first, the prover or the model builder, is the
result that will be used.
"""
def __init__(self, prover, modelbuilder):
self._prover = prover
self._modelbuilder = modelbuilder
def _prove(self, goal=None, assumptions=None, verbose=False):
return self._run(goal, assumptions, verbose), ""
def _build_model(self, goal=None, assumptions=None, verbose=False):
return not self._run(goal, assumptions, verbose), ""
def _run(self, goal, assumptions, verbose):
# Set up two thread, Prover and ModelBuilder to run in parallel
tp_thread = TheoremToolThread(
lambda: self._prover.prove(goal, assumptions, verbose), verbose, "TP"
)
mb_thread = TheoremToolThread(
lambda: self._modelbuilder.build_model(goal, assumptions, verbose),
verbose,
"MB",
)
tp_thread.start()
mb_thread.start()
while tp_thread.is_alive() and mb_thread.is_alive():
# wait until either the prover or the model builder is done
pass
if tp_thread.result is not None:
return tp_thread.result
elif mb_thread.result is not None:
return not mb_thread.result
else:
return None
class ParallelProverBuilderCommand(BaseProverCommand, BaseModelBuilderCommand):
"""
This command stores both a prover and a model builder and when either
prove() or build_model() is called, then both theorem tools are run in
parallel. Whichever finishes first, the prover or the model builder, is the
result that will be used.
Because the theorem prover result is the opposite of the model builder
result, we will treat self._result as meaning "proof found/no model found".
"""
def __init__(self, prover, modelbuilder, goal=None, assumptions=None):
BaseProverCommand.__init__(self, prover, goal, assumptions)
BaseModelBuilderCommand.__init__(self, modelbuilder, goal, assumptions)
def prove(self, verbose=False):
return self._run(verbose)
def build_model(self, verbose=False):
return not self._run(verbose)
def _run(self, verbose):
# Set up two thread, Prover and ModelBuilder to run in parallel
tp_thread = TheoremToolThread(
lambda: BaseProverCommand.prove(self, verbose), verbose, "TP"
)
mb_thread = TheoremToolThread(
lambda: BaseModelBuilderCommand.build_model(self, verbose), verbose, "MB"
)
tp_thread.start()
mb_thread.start()
while tp_thread.is_alive() and mb_thread.is_alive():
# wait until either the prover or the model builder is done
pass
if tp_thread.result is not None:
self._result = tp_thread.result
elif mb_thread.result is not None:
self._result = not mb_thread.result
return self._result
class TheoremToolThread(threading.Thread):
def __init__(self, command, verbose, name=None):
threading.Thread.__init__(self)
self._command = command
self._result = None
self._verbose = verbose
self._name = name
def run(self):
try:
self._result = self._command()
if self._verbose:
print(
"Thread %s finished with result %s at %s"
% (self._name, self._result, time.localtime(time.time()))
)
except Exception as e:
print(e)
print("Thread %s completed abnormally" % (self._name))
@property
def result(self):
return self._result
|