Spaces:
Sleeping
Sleeping
File size: 10,039 Bytes
d916065 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
# Natural Language Toolkit: Clusterer Utilities
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Trevor Cohn <[email protected]>
# Contributor: J Richard Snape
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
import copy
from abc import abstractmethod
from math import sqrt
from sys import stdout
try:
import numpy
except ImportError:
pass
from nltk.cluster.api import ClusterI
class VectorSpaceClusterer(ClusterI):
"""
Abstract clusterer which takes tokens and maps them into a vector space.
Optionally performs singular value decomposition to reduce the
dimensionality.
"""
def __init__(self, normalise=False, svd_dimensions=None):
"""
:param normalise: should vectors be normalised to length 1
:type normalise: boolean
:param svd_dimensions: number of dimensions to use in reducing vector
dimensionsionality with SVD
:type svd_dimensions: int
"""
self._Tt = None
self._should_normalise = normalise
self._svd_dimensions = svd_dimensions
def cluster(self, vectors, assign_clusters=False, trace=False):
assert len(vectors) > 0
# normalise the vectors
if self._should_normalise:
vectors = list(map(self._normalise, vectors))
# use SVD to reduce the dimensionality
if self._svd_dimensions and self._svd_dimensions < len(vectors[0]):
[u, d, vt] = numpy.linalg.svd(numpy.transpose(numpy.array(vectors)))
S = d[: self._svd_dimensions] * numpy.identity(
self._svd_dimensions, numpy.float64
)
T = u[:, : self._svd_dimensions]
Dt = vt[: self._svd_dimensions, :]
vectors = numpy.transpose(numpy.dot(S, Dt))
self._Tt = numpy.transpose(T)
# call abstract method to cluster the vectors
self.cluster_vectorspace(vectors, trace)
# assign the vectors to clusters
if assign_clusters:
return [self.classify(vector) for vector in vectors]
@abstractmethod
def cluster_vectorspace(self, vectors, trace):
"""
Finds the clusters using the given set of vectors.
"""
def classify(self, vector):
if self._should_normalise:
vector = self._normalise(vector)
if self._Tt is not None:
vector = numpy.dot(self._Tt, vector)
cluster = self.classify_vectorspace(vector)
return self.cluster_name(cluster)
@abstractmethod
def classify_vectorspace(self, vector):
"""
Returns the index of the appropriate cluster for the vector.
"""
def likelihood(self, vector, label):
if self._should_normalise:
vector = self._normalise(vector)
if self._Tt is not None:
vector = numpy.dot(self._Tt, vector)
return self.likelihood_vectorspace(vector, label)
def likelihood_vectorspace(self, vector, cluster):
"""
Returns the likelihood of the vector belonging to the cluster.
"""
predicted = self.classify_vectorspace(vector)
return 1.0 if cluster == predicted else 0.0
def vector(self, vector):
"""
Returns the vector after normalisation and dimensionality reduction
"""
if self._should_normalise:
vector = self._normalise(vector)
if self._Tt is not None:
vector = numpy.dot(self._Tt, vector)
return vector
def _normalise(self, vector):
"""
Normalises the vector to unit length.
"""
return vector / sqrt(numpy.dot(vector, vector))
def euclidean_distance(u, v):
"""
Returns the euclidean distance between vectors u and v. This is equivalent
to the length of the vector (u - v).
"""
diff = u - v
return sqrt(numpy.dot(diff, diff))
def cosine_distance(u, v):
"""
Returns 1 minus the cosine of the angle between vectors v and u. This is
equal to ``1 - (u.v / |u||v|)``.
"""
return 1 - (numpy.dot(u, v) / (sqrt(numpy.dot(u, u)) * sqrt(numpy.dot(v, v))))
class _DendrogramNode:
"""Tree node of a dendrogram."""
def __init__(self, value, *children):
self._value = value
self._children = children
def leaves(self, values=True):
if self._children:
leaves = []
for child in self._children:
leaves.extend(child.leaves(values))
return leaves
elif values:
return [self._value]
else:
return [self]
def groups(self, n):
queue = [(self._value, self)]
while len(queue) < n:
priority, node = queue.pop()
if not node._children:
queue.push((priority, node))
break
for child in node._children:
if child._children:
queue.append((child._value, child))
else:
queue.append((0, child))
# makes the earliest merges at the start, latest at the end
queue.sort()
groups = []
for priority, node in queue:
groups.append(node.leaves())
return groups
def __lt__(self, comparator):
return cosine_distance(self._value, comparator._value) < 0
class Dendrogram:
"""
Represents a dendrogram, a tree with a specified branching order. This
must be initialised with the leaf items, then iteratively call merge for
each branch. This class constructs a tree representing the order of calls
to the merge function.
"""
def __init__(self, items=[]):
"""
:param items: the items at the leaves of the dendrogram
:type items: sequence of (any)
"""
self._items = [_DendrogramNode(item) for item in items]
self._original_items = copy.copy(self._items)
self._merge = 1
def merge(self, *indices):
"""
Merges nodes at given indices in the dendrogram. The nodes will be
combined which then replaces the first node specified. All other nodes
involved in the merge will be removed.
:param indices: indices of the items to merge (at least two)
:type indices: seq of int
"""
assert len(indices) >= 2
node = _DendrogramNode(self._merge, *(self._items[i] for i in indices))
self._merge += 1
self._items[indices[0]] = node
for i in indices[1:]:
del self._items[i]
def groups(self, n):
"""
Finds the n-groups of items (leaves) reachable from a cut at depth n.
:param n: number of groups
:type n: int
"""
if len(self._items) > 1:
root = _DendrogramNode(self._merge, *self._items)
else:
root = self._items[0]
return root.groups(n)
def show(self, leaf_labels=[]):
"""
Print the dendrogram in ASCII art to standard out.
:param leaf_labels: an optional list of strings to use for labeling the
leaves
:type leaf_labels: list
"""
# ASCII rendering characters
JOIN, HLINK, VLINK = "+", "-", "|"
# find the root (or create one)
if len(self._items) > 1:
root = _DendrogramNode(self._merge, *self._items)
else:
root = self._items[0]
leaves = self._original_items
if leaf_labels:
last_row = leaf_labels
else:
last_row = ["%s" % leaf._value for leaf in leaves]
# find the bottom row and the best cell width
width = max(map(len, last_row)) + 1
lhalf = width // 2
rhalf = int(width - lhalf - 1)
# display functions
def format(centre, left=" ", right=" "):
return f"{lhalf * left}{centre}{right * rhalf}"
def display(str):
stdout.write(str)
# for each merge, top down
queue = [(root._value, root)]
verticals = [format(" ") for leaf in leaves]
while queue:
priority, node = queue.pop()
child_left_leaf = list(map(lambda c: c.leaves(False)[0], node._children))
indices = list(map(leaves.index, child_left_leaf))
if child_left_leaf:
min_idx = min(indices)
max_idx = max(indices)
for i in range(len(leaves)):
if leaves[i] in child_left_leaf:
if i == min_idx:
display(format(JOIN, " ", HLINK))
elif i == max_idx:
display(format(JOIN, HLINK, " "))
else:
display(format(JOIN, HLINK, HLINK))
verticals[i] = format(VLINK)
elif min_idx <= i <= max_idx:
display(format(HLINK, HLINK, HLINK))
else:
display(verticals[i])
display("\n")
for child in node._children:
if child._children:
queue.append((child._value, child))
queue.sort()
for vertical in verticals:
display(vertical)
display("\n")
# finally, display the last line
display("".join(item.center(width) for item in last_row))
display("\n")
def __repr__(self):
if len(self._items) > 1:
root = _DendrogramNode(self._merge, *self._items)
else:
root = self._items[0]
leaves = root.leaves(False)
return "<Dendrogram with %d leaves>" % len(leaves)
|