Spaces:
Sleeping
Sleeping
File size: 11,140 Bytes
d916065 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
# Natural Language Toolkit: Chunk parsing API
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Edward Loper <[email protected]>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
"""
Named entity chunker
"""
import os
import pickle
import re
from xml.etree import ElementTree as ET
from nltk.tag import ClassifierBasedTagger, pos_tag
try:
from nltk.classify import MaxentClassifier
except ImportError:
pass
from nltk.chunk.api import ChunkParserI
from nltk.chunk.util import ChunkScore
from nltk.data import find
from nltk.tokenize import word_tokenize
from nltk.tree import Tree
class NEChunkParserTagger(ClassifierBasedTagger):
"""
The IOB tagger used by the chunk parser.
"""
def __init__(self, train):
ClassifierBasedTagger.__init__(
self, train=train, classifier_builder=self._classifier_builder
)
def _classifier_builder(self, train):
return MaxentClassifier.train(
train, algorithm="megam", gaussian_prior_sigma=1, trace=2
)
def _english_wordlist(self):
try:
wl = self._en_wordlist
except AttributeError:
from nltk.corpus import words
self._en_wordlist = set(words.words("en-basic"))
wl = self._en_wordlist
return wl
def _feature_detector(self, tokens, index, history):
word = tokens[index][0]
pos = simplify_pos(tokens[index][1])
if index == 0:
prevword = prevprevword = None
prevpos = prevprevpos = None
prevshape = prevtag = prevprevtag = None
elif index == 1:
prevword = tokens[index - 1][0].lower()
prevprevword = None
prevpos = simplify_pos(tokens[index - 1][1])
prevprevpos = None
prevtag = history[index - 1][0]
prevshape = prevprevtag = None
else:
prevword = tokens[index - 1][0].lower()
prevprevword = tokens[index - 2][0].lower()
prevpos = simplify_pos(tokens[index - 1][1])
prevprevpos = simplify_pos(tokens[index - 2][1])
prevtag = history[index - 1]
prevprevtag = history[index - 2]
prevshape = shape(prevword)
if index == len(tokens) - 1:
nextword = nextnextword = None
nextpos = nextnextpos = None
elif index == len(tokens) - 2:
nextword = tokens[index + 1][0].lower()
nextpos = tokens[index + 1][1].lower()
nextnextword = None
nextnextpos = None
else:
nextword = tokens[index + 1][0].lower()
nextpos = tokens[index + 1][1].lower()
nextnextword = tokens[index + 2][0].lower()
nextnextpos = tokens[index + 2][1].lower()
# 89.6
features = {
"bias": True,
"shape": shape(word),
"wordlen": len(word),
"prefix3": word[:3].lower(),
"suffix3": word[-3:].lower(),
"pos": pos,
"word": word,
"en-wordlist": (word in self._english_wordlist()),
"prevtag": prevtag,
"prevpos": prevpos,
"nextpos": nextpos,
"prevword": prevword,
"nextword": nextword,
"word+nextpos": f"{word.lower()}+{nextpos}",
"pos+prevtag": f"{pos}+{prevtag}",
"shape+prevtag": f"{prevshape}+{prevtag}",
}
return features
class NEChunkParser(ChunkParserI):
"""
Expected input: list of pos-tagged words
"""
def __init__(self, train):
self._train(train)
def parse(self, tokens):
"""
Each token should be a pos-tagged word
"""
tagged = self._tagger.tag(tokens)
tree = self._tagged_to_parse(tagged)
return tree
def _train(self, corpus):
# Convert to tagged sequence
corpus = [self._parse_to_tagged(s) for s in corpus]
self._tagger = NEChunkParserTagger(train=corpus)
def _tagged_to_parse(self, tagged_tokens):
"""
Convert a list of tagged tokens to a chunk-parse tree.
"""
sent = Tree("S", [])
for (tok, tag) in tagged_tokens:
if tag == "O":
sent.append(tok)
elif tag.startswith("B-"):
sent.append(Tree(tag[2:], [tok]))
elif tag.startswith("I-"):
if sent and isinstance(sent[-1], Tree) and sent[-1].label() == tag[2:]:
sent[-1].append(tok)
else:
sent.append(Tree(tag[2:], [tok]))
return sent
@staticmethod
def _parse_to_tagged(sent):
"""
Convert a chunk-parse tree to a list of tagged tokens.
"""
toks = []
for child in sent:
if isinstance(child, Tree):
if len(child) == 0:
print("Warning -- empty chunk in sentence")
continue
toks.append((child[0], f"B-{child.label()}"))
for tok in child[1:]:
toks.append((tok, f"I-{child.label()}"))
else:
toks.append((child, "O"))
return toks
def shape(word):
if re.match(r"[0-9]+(\.[0-9]*)?|[0-9]*\.[0-9]+$", word, re.UNICODE):
return "number"
elif re.match(r"\W+$", word, re.UNICODE):
return "punct"
elif re.match(r"\w+$", word, re.UNICODE):
if word.istitle():
return "upcase"
elif word.islower():
return "downcase"
else:
return "mixedcase"
else:
return "other"
def simplify_pos(s):
if s.startswith("V"):
return "V"
else:
return s.split("-")[0]
def postag_tree(tree):
# Part-of-speech tagging.
words = tree.leaves()
tag_iter = (pos for (word, pos) in pos_tag(words))
newtree = Tree("S", [])
for child in tree:
if isinstance(child, Tree):
newtree.append(Tree(child.label(), []))
for subchild in child:
newtree[-1].append((subchild, next(tag_iter)))
else:
newtree.append((child, next(tag_iter)))
return newtree
def load_ace_data(roots, fmt="binary", skip_bnews=True):
for root in roots:
for root, dirs, files in os.walk(root):
if root.endswith("bnews") and skip_bnews:
continue
for f in files:
if f.endswith(".sgm"):
yield from load_ace_file(os.path.join(root, f), fmt)
def load_ace_file(textfile, fmt):
print(f" - {os.path.split(textfile)[1]}")
annfile = textfile + ".tmx.rdc.xml"
# Read the xml file, and get a list of entities
entities = []
with open(annfile) as infile:
xml = ET.parse(infile).getroot()
for entity in xml.findall("document/entity"):
typ = entity.find("entity_type").text
for mention in entity.findall("entity_mention"):
if mention.get("TYPE") != "NAME":
continue # only NEs
s = int(mention.find("head/charseq/start").text)
e = int(mention.find("head/charseq/end").text) + 1
entities.append((s, e, typ))
# Read the text file, and mark the entities.
with open(textfile) as infile:
text = infile.read()
# Strip XML tags, since they don't count towards the indices
text = re.sub("<(?!/?TEXT)[^>]+>", "", text)
# Blank out anything before/after <TEXT>
def subfunc(m):
return " " * (m.end() - m.start() - 6)
text = re.sub(r"[\s\S]*<TEXT>", subfunc, text)
text = re.sub(r"</TEXT>[\s\S]*", "", text)
# Simplify quotes
text = re.sub("``", ' "', text)
text = re.sub("''", '" ', text)
entity_types = {typ for (s, e, typ) in entities}
# Binary distinction (NE or not NE)
if fmt == "binary":
i = 0
toks = Tree("S", [])
for (s, e, typ) in sorted(entities):
if s < i:
s = i # Overlapping! Deal with this better?
if e <= s:
continue
toks.extend(word_tokenize(text[i:s]))
toks.append(Tree("NE", text[s:e].split()))
i = e
toks.extend(word_tokenize(text[i:]))
yield toks
# Multiclass distinction (NE type)
elif fmt == "multiclass":
i = 0
toks = Tree("S", [])
for (s, e, typ) in sorted(entities):
if s < i:
s = i # Overlapping! Deal with this better?
if e <= s:
continue
toks.extend(word_tokenize(text[i:s]))
toks.append(Tree(typ, text[s:e].split()))
i = e
toks.extend(word_tokenize(text[i:]))
yield toks
else:
raise ValueError("bad fmt value")
# This probably belongs in a more general-purpose location (as does
# the parse_to_tagged function).
def cmp_chunks(correct, guessed):
correct = NEChunkParser._parse_to_tagged(correct)
guessed = NEChunkParser._parse_to_tagged(guessed)
ellipsis = False
for (w, ct), (w, gt) in zip(correct, guessed):
if ct == gt == "O":
if not ellipsis:
print(f" {ct:15} {gt:15} {w}")
print(" {:15} {:15} {2}".format("...", "...", "..."))
ellipsis = True
else:
ellipsis = False
print(f" {ct:15} {gt:15} {w}")
def build_model(fmt="binary"):
print("Loading training data...")
train_paths = [
find("corpora/ace_data/ace.dev"),
find("corpora/ace_data/ace.heldout"),
find("corpora/ace_data/bbn.dev"),
find("corpora/ace_data/muc.dev"),
]
train_trees = load_ace_data(train_paths, fmt)
train_data = [postag_tree(t) for t in train_trees]
print("Training...")
cp = NEChunkParser(train_data)
del train_data
print("Loading eval data...")
eval_paths = [find("corpora/ace_data/ace.eval")]
eval_trees = load_ace_data(eval_paths, fmt)
eval_data = [postag_tree(t) for t in eval_trees]
print("Evaluating...")
chunkscore = ChunkScore()
for i, correct in enumerate(eval_data):
guess = cp.parse(correct.leaves())
chunkscore.score(correct, guess)
if i < 3:
cmp_chunks(correct, guess)
print(chunkscore)
outfilename = f"/tmp/ne_chunker_{fmt}.pickle"
print(f"Saving chunker to {outfilename}...")
with open(outfilename, "wb") as outfile:
pickle.dump(cp, outfile, -1)
return cp
if __name__ == "__main__":
# Make sure that the pickled object has the right class name:
from nltk.chunk.named_entity import build_model
build_model("binary")
build_model("multiclass")
|