File size: 11,140 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
# Natural Language Toolkit: Chunk parsing API
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Edward Loper <[email protected]>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT

"""

Named entity chunker

"""

import os
import pickle
import re
from xml.etree import ElementTree as ET

from nltk.tag import ClassifierBasedTagger, pos_tag

try:
    from nltk.classify import MaxentClassifier
except ImportError:
    pass

from nltk.chunk.api import ChunkParserI
from nltk.chunk.util import ChunkScore
from nltk.data import find
from nltk.tokenize import word_tokenize
from nltk.tree import Tree


class NEChunkParserTagger(ClassifierBasedTagger):
    """

    The IOB tagger used by the chunk parser.

    """

    def __init__(self, train):
        ClassifierBasedTagger.__init__(
            self, train=train, classifier_builder=self._classifier_builder
        )

    def _classifier_builder(self, train):
        return MaxentClassifier.train(
            train, algorithm="megam", gaussian_prior_sigma=1, trace=2
        )

    def _english_wordlist(self):
        try:
            wl = self._en_wordlist
        except AttributeError:
            from nltk.corpus import words

            self._en_wordlist = set(words.words("en-basic"))
            wl = self._en_wordlist
        return wl

    def _feature_detector(self, tokens, index, history):
        word = tokens[index][0]
        pos = simplify_pos(tokens[index][1])
        if index == 0:
            prevword = prevprevword = None
            prevpos = prevprevpos = None
            prevshape = prevtag = prevprevtag = None
        elif index == 1:
            prevword = tokens[index - 1][0].lower()
            prevprevword = None
            prevpos = simplify_pos(tokens[index - 1][1])
            prevprevpos = None
            prevtag = history[index - 1][0]
            prevshape = prevprevtag = None
        else:
            prevword = tokens[index - 1][0].lower()
            prevprevword = tokens[index - 2][0].lower()
            prevpos = simplify_pos(tokens[index - 1][1])
            prevprevpos = simplify_pos(tokens[index - 2][1])
            prevtag = history[index - 1]
            prevprevtag = history[index - 2]
            prevshape = shape(prevword)
        if index == len(tokens) - 1:
            nextword = nextnextword = None
            nextpos = nextnextpos = None
        elif index == len(tokens) - 2:
            nextword = tokens[index + 1][0].lower()
            nextpos = tokens[index + 1][1].lower()
            nextnextword = None
            nextnextpos = None
        else:
            nextword = tokens[index + 1][0].lower()
            nextpos = tokens[index + 1][1].lower()
            nextnextword = tokens[index + 2][0].lower()
            nextnextpos = tokens[index + 2][1].lower()

        # 89.6
        features = {
            "bias": True,
            "shape": shape(word),
            "wordlen": len(word),
            "prefix3": word[:3].lower(),
            "suffix3": word[-3:].lower(),
            "pos": pos,
            "word": word,
            "en-wordlist": (word in self._english_wordlist()),
            "prevtag": prevtag,
            "prevpos": prevpos,
            "nextpos": nextpos,
            "prevword": prevword,
            "nextword": nextword,
            "word+nextpos": f"{word.lower()}+{nextpos}",
            "pos+prevtag": f"{pos}+{prevtag}",
            "shape+prevtag": f"{prevshape}+{prevtag}",
        }

        return features


class NEChunkParser(ChunkParserI):
    """

    Expected input: list of pos-tagged words

    """

    def __init__(self, train):
        self._train(train)

    def parse(self, tokens):
        """

        Each token should be a pos-tagged word

        """
        tagged = self._tagger.tag(tokens)
        tree = self._tagged_to_parse(tagged)
        return tree

    def _train(self, corpus):
        # Convert to tagged sequence
        corpus = [self._parse_to_tagged(s) for s in corpus]

        self._tagger = NEChunkParserTagger(train=corpus)

    def _tagged_to_parse(self, tagged_tokens):
        """

        Convert a list of tagged tokens to a chunk-parse tree.

        """
        sent = Tree("S", [])

        for (tok, tag) in tagged_tokens:
            if tag == "O":
                sent.append(tok)
            elif tag.startswith("B-"):
                sent.append(Tree(tag[2:], [tok]))
            elif tag.startswith("I-"):
                if sent and isinstance(sent[-1], Tree) and sent[-1].label() == tag[2:]:
                    sent[-1].append(tok)
                else:
                    sent.append(Tree(tag[2:], [tok]))
        return sent

    @staticmethod
    def _parse_to_tagged(sent):
        """

        Convert a chunk-parse tree to a list of tagged tokens.

        """
        toks = []
        for child in sent:
            if isinstance(child, Tree):
                if len(child) == 0:
                    print("Warning -- empty chunk in sentence")
                    continue
                toks.append((child[0], f"B-{child.label()}"))
                for tok in child[1:]:
                    toks.append((tok, f"I-{child.label()}"))
            else:
                toks.append((child, "O"))
        return toks


def shape(word):
    if re.match(r"[0-9]+(\.[0-9]*)?|[0-9]*\.[0-9]+$", word, re.UNICODE):
        return "number"
    elif re.match(r"\W+$", word, re.UNICODE):
        return "punct"
    elif re.match(r"\w+$", word, re.UNICODE):
        if word.istitle():
            return "upcase"
        elif word.islower():
            return "downcase"
        else:
            return "mixedcase"
    else:
        return "other"


def simplify_pos(s):
    if s.startswith("V"):
        return "V"
    else:
        return s.split("-")[0]


def postag_tree(tree):
    # Part-of-speech tagging.
    words = tree.leaves()
    tag_iter = (pos for (word, pos) in pos_tag(words))
    newtree = Tree("S", [])
    for child in tree:
        if isinstance(child, Tree):
            newtree.append(Tree(child.label(), []))
            for subchild in child:
                newtree[-1].append((subchild, next(tag_iter)))
        else:
            newtree.append((child, next(tag_iter)))
    return newtree


def load_ace_data(roots, fmt="binary", skip_bnews=True):
    for root in roots:
        for root, dirs, files in os.walk(root):
            if root.endswith("bnews") and skip_bnews:
                continue
            for f in files:
                if f.endswith(".sgm"):
                    yield from load_ace_file(os.path.join(root, f), fmt)


def load_ace_file(textfile, fmt):
    print(f"  - {os.path.split(textfile)[1]}")
    annfile = textfile + ".tmx.rdc.xml"

    # Read the xml file, and get a list of entities
    entities = []
    with open(annfile) as infile:
        xml = ET.parse(infile).getroot()
    for entity in xml.findall("document/entity"):
        typ = entity.find("entity_type").text
        for mention in entity.findall("entity_mention"):
            if mention.get("TYPE") != "NAME":
                continue  # only NEs
            s = int(mention.find("head/charseq/start").text)
            e = int(mention.find("head/charseq/end").text) + 1
            entities.append((s, e, typ))

    # Read the text file, and mark the entities.
    with open(textfile) as infile:
        text = infile.read()

    # Strip XML tags, since they don't count towards the indices
    text = re.sub("<(?!/?TEXT)[^>]+>", "", text)

    # Blank out anything before/after <TEXT>
    def subfunc(m):
        return " " * (m.end() - m.start() - 6)

    text = re.sub(r"[\s\S]*<TEXT>", subfunc, text)
    text = re.sub(r"</TEXT>[\s\S]*", "", text)

    # Simplify quotes
    text = re.sub("``", ' "', text)
    text = re.sub("''", '" ', text)

    entity_types = {typ for (s, e, typ) in entities}

    # Binary distinction (NE or not NE)
    if fmt == "binary":
        i = 0
        toks = Tree("S", [])
        for (s, e, typ) in sorted(entities):
            if s < i:
                s = i  # Overlapping!  Deal with this better?
            if e <= s:
                continue
            toks.extend(word_tokenize(text[i:s]))
            toks.append(Tree("NE", text[s:e].split()))
            i = e
        toks.extend(word_tokenize(text[i:]))
        yield toks

    # Multiclass distinction (NE type)
    elif fmt == "multiclass":
        i = 0
        toks = Tree("S", [])
        for (s, e, typ) in sorted(entities):
            if s < i:
                s = i  # Overlapping!  Deal with this better?
            if e <= s:
                continue
            toks.extend(word_tokenize(text[i:s]))
            toks.append(Tree(typ, text[s:e].split()))
            i = e
        toks.extend(word_tokenize(text[i:]))
        yield toks

    else:
        raise ValueError("bad fmt value")


# This probably belongs in a more general-purpose location (as does
# the parse_to_tagged function).
def cmp_chunks(correct, guessed):
    correct = NEChunkParser._parse_to_tagged(correct)
    guessed = NEChunkParser._parse_to_tagged(guessed)
    ellipsis = False
    for (w, ct), (w, gt) in zip(correct, guessed):
        if ct == gt == "O":
            if not ellipsis:
                print(f"  {ct:15} {gt:15} {w}")
                print("  {:15} {:15} {2}".format("...", "...", "..."))
                ellipsis = True
        else:
            ellipsis = False
            print(f"  {ct:15} {gt:15} {w}")


def build_model(fmt="binary"):
    print("Loading training data...")
    train_paths = [
        find("corpora/ace_data/ace.dev"),
        find("corpora/ace_data/ace.heldout"),
        find("corpora/ace_data/bbn.dev"),
        find("corpora/ace_data/muc.dev"),
    ]
    train_trees = load_ace_data(train_paths, fmt)
    train_data = [postag_tree(t) for t in train_trees]
    print("Training...")
    cp = NEChunkParser(train_data)
    del train_data

    print("Loading eval data...")
    eval_paths = [find("corpora/ace_data/ace.eval")]
    eval_trees = load_ace_data(eval_paths, fmt)
    eval_data = [postag_tree(t) for t in eval_trees]

    print("Evaluating...")
    chunkscore = ChunkScore()
    for i, correct in enumerate(eval_data):
        guess = cp.parse(correct.leaves())
        chunkscore.score(correct, guess)
        if i < 3:
            cmp_chunks(correct, guess)
    print(chunkscore)

    outfilename = f"/tmp/ne_chunker_{fmt}.pickle"
    print(f"Saving chunker to {outfilename}...")

    with open(outfilename, "wb") as outfile:
        pickle.dump(cp, outfile, -1)

    return cp


if __name__ == "__main__":
    # Make sure that the pickled object has the right class name:
    from nltk.chunk.named_entity import build_model

    build_model("binary")
    build_model("multiclass")