File size: 5,172 Bytes
24c4def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp

from mmengine.config import Config, DictAction
from mmengine.registry import RUNNERS
from mmengine.runner import Runner


def parse_args():
    parser = argparse.ArgumentParser(description='Test (and eval) a model')
    parser.add_argument('config', help='Test config file path')
    parser.add_argument('checkpoint', help='Checkpoint file')
    parser.add_argument(
        '--work-dir',
        help='The directory to save the file containing evaluation metrics')
    parser.add_argument(
        '--save-preds',
        action='store_true',
        help='Dump predictions to a pickle file for offline evaluation')
    parser.add_argument(
        '--show', action='store_true', help='Show prediction results')
    parser.add_argument(
        '--show-dir',
        help='Directory where painted images will be saved. '
        'If specified, it will be automatically saved '
        'to the work_dir/timestamp/show_dir')
    parser.add_argument(
        '--wait-time', type=float, default=2, help='The interval of show (s)')
    parser.add_argument(
        '--cfg-options',
        nargs='+',
        action=DictAction,
        help='Override some settings in the used config, the key-value pair '
        'in xxx=yyy format will be merged into config file. If the value to '
        'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
        'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
        'Note that the quotation marks are necessary and that no white space '
        'is allowed.')
    parser.add_argument(
        '--launcher',
        choices=['none', 'pytorch', 'slurm', 'mpi'],
        default='none',
        help='Job launcher')
    parser.add_argument(
        '--tta', action='store_true', help='Test time augmentation')
    # When using PyTorch version >= 2.0.0, the `torch.distributed.launch`
    # will pass the `--local-rank` parameter to `tools/test.py` instead
    # of `--local_rank`.
    parser.add_argument('--local_rank', '--local-rank', type=int, default=0)
    args = parser.parse_args()
    if 'LOCAL_RANK' not in os.environ:
        os.environ['LOCAL_RANK'] = str(args.local_rank)
    return args


def trigger_visualization_hook(cfg, args):
    default_hooks = cfg.default_hooks
    if 'visualization' in default_hooks:
        visualization_hook = default_hooks['visualization']
        # Turn on visualization
        visualization_hook['enable'] = True
        visualization_hook['draw_gt'] = True
        visualization_hook['draw_pred'] = True
        if args.show:
            visualization_hook['show'] = True
            visualization_hook['wait_time'] = args.wait_time
        if args.show_dir:
            cfg.visualizer['save_dir'] = args.show_dir
            cfg.visualizer['vis_backends'] = [dict(type='LocalVisBackend')]
    else:
        raise RuntimeError(
            'VisualizationHook must be included in default_hooks.'
            'refer to usage '
            '"visualization=dict(type=\'VisualizationHook\')"')

    return cfg


def main():
    args = parse_args()

    # load config
    cfg = Config.fromfile(args.config)
    cfg.launcher = args.launcher
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)

    # work_dir is determined in this priority: CLI > segment in file > filename
    if args.work_dir is not None:
        # update configs according to CLI args if args.work_dir is not None
        cfg.work_dir = args.work_dir
    elif cfg.get('work_dir', None) is None:
        # use config filename as default work_dir if cfg.work_dir is None
        cfg.work_dir = osp.join('./work_dirs',
                                osp.splitext(osp.basename(args.config))[0])

    cfg.load_from = args.checkpoint

    # TODO: It will be supported after refactoring the visualizer
    if args.show and args.show_dir:
        raise NotImplementedError('--show and --show-dir cannot be set '
                                  'at the same time')

    if args.show or args.show_dir:
        cfg = trigger_visualization_hook(cfg, args)

    if args.tta:
        cfg.test_dataloader.dataset.pipeline = cfg.tta_pipeline
        cfg.tta_model.module = cfg.model
        cfg.model = cfg.tta_model

    # save predictions
    if args.save_preds:
        dump_metric = dict(
            type='DumpResults',
            out_file_path=osp.join(
                cfg.work_dir,
                f'{osp.basename(args.checkpoint)}_predictions.pkl'))
        if isinstance(cfg.test_evaluator, (list, tuple)):
            cfg.test_evaluator = list(cfg.test_evaluator)
            cfg.test_evaluator.append(dump_metric)
        else:
            cfg.test_evaluator = [cfg.test_evaluator, dump_metric]

    # build the runner from config
    if 'runner_type' not in cfg:
        # build the default runner
        runner = Runner.from_cfg(cfg)
    else:
        # build customized runner from the registry
        # if 'runner_type' is set in the cfg
        runner = RUNNERS.build(cfg)

    # start testing
    runner.test()


if __name__ == '__main__':
    main()