Spaces:
Sleeping
Sleeping
File size: 3,261 Bytes
24c4def |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 |
# Copyright (c) OpenMMLab. All rights reserved.
from unittest import TestCase
import numpy as np
import torch
from mmengine.structures import InstanceData
from mmocr.structures import TextSpottingDataSample
class TestTextSpottingDataSample(TestCase):
def _equal(self, a, b):
if isinstance(a, (torch.Tensor, np.ndarray)):
return (a == b).all()
else:
return a == b
def test_init(self):
meta_info = dict(
img_size=[256, 256],
scale_factor=np.array([1.5, 1.5]),
img_shape=torch.rand(4))
e2e_data_sample = TextSpottingDataSample(metainfo=meta_info)
assert 'img_size' in e2e_data_sample
self.assertListEqual(e2e_data_sample.img_size, [256, 256])
self.assertListEqual(e2e_data_sample.get('img_size'), [256, 256])
def test_setter(self):
e2e_data_sample = TextSpottingDataSample()
# test gt_instances
gt_instances_data = dict(
bboxes=torch.rand(4, 4),
labels=torch.rand(4),
masks=np.random.rand(4, 2, 2))
gt_instances = InstanceData(**gt_instances_data)
e2e_data_sample.gt_instances = gt_instances
assert 'gt_instances' in e2e_data_sample
assert self._equal(e2e_data_sample.gt_instances.bboxes,
gt_instances_data['bboxes'])
assert self._equal(e2e_data_sample.gt_instances.labels,
gt_instances_data['labels'])
assert self._equal(e2e_data_sample.gt_instances.masks,
gt_instances_data['masks'])
# test pred_instances
pred_instances_data = dict(
bboxes=torch.rand(2, 4),
labels=torch.rand(2),
masks=np.random.rand(2, 2, 2))
pred_instances = InstanceData(**pred_instances_data)
e2e_data_sample.pred_instances = pred_instances
assert 'pred_instances' in e2e_data_sample
assert self._equal(e2e_data_sample.pred_instances.bboxes,
pred_instances_data['bboxes'])
assert self._equal(e2e_data_sample.pred_instances.labels,
pred_instances_data['labels'])
assert self._equal(e2e_data_sample.pred_instances.masks,
pred_instances_data['masks'])
# test type error
with self.assertRaises(AssertionError):
e2e_data_sample.gt_instances = torch.rand(2, 4)
with self.assertRaises(AssertionError):
e2e_data_sample.pred_instances = torch.rand(2, 4)
def test_deleter(self):
gt_instances_data = dict(
bboxes=torch.rand(4, 4),
labels=torch.rand(4),
masks=np.random.rand(4, 2, 2))
e2e_data_sample = TextSpottingDataSample()
gt_instances = InstanceData(data=gt_instances_data)
e2e_data_sample.gt_instances = gt_instances
assert 'gt_instances' in e2e_data_sample
del e2e_data_sample.gt_instances
assert 'gt_instances' not in e2e_data_sample
e2e_data_sample.pred_instances = gt_instances
assert 'pred_instances' in e2e_data_sample
del e2e_data_sample.pred_instances
assert 'pred_instances' not in e2e_data_sample
|