File size: 4,283 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
.. Copyright (C) 2001-2023 NLTK Project
.. For license information, see LICENSE.TXT

==========================================
 Unit tests for the nltk.utilities module
==========================================

overridden()
~~~~~~~~~~~~
    >>> from nltk.internals import overridden

The typical use case is in defining methods for an interface or
abstract base class, in such a way that subclasses don't have to
implement all of the methods:

    >>> class EaterI(object):
    ...     '''Subclass must define eat() or batch_eat().'''
    ...     def eat(self, food):
    ...         if overridden(self.batch_eat):
    ...             return self.batch_eat([food])[0]
    ...         else:
    ...             raise NotImplementedError()
    ...     def batch_eat(self, foods):
    ...         return [self.eat(food) for food in foods]

As long as a subclass implements one method, it will be used to
perform the other method:

    >>> class GoodEater1(EaterI):
    ...     def eat(self, food):
    ...         return 'yum'
    >>> GoodEater1().eat('steak')
    'yum'
    >>> GoodEater1().batch_eat(['steak', 'peas'])
    ['yum', 'yum']

    >>> class GoodEater2(EaterI):
    ...     def batch_eat(self, foods):
    ...         return ['yum' for food in foods]
    >>> GoodEater2().eat('steak')
    'yum'
    >>> GoodEater2().batch_eat(['steak', 'peas'])
    ['yum', 'yum']

But if a subclass doesn't implement either one, then they'll get an
error when they try to call them.  (nb this is better than infinite
recursion):

    >>> class BadEater1(EaterI):
    ...     pass
    >>> BadEater1().eat('steak')
    Traceback (most recent call last):
      . . .
    NotImplementedError
    >>> BadEater1().batch_eat(['steak', 'peas'])
    Traceback (most recent call last):
      . . .
    NotImplementedError

Trying to use the abstract base class itself will also result in an
error:

    >>> class EaterI(EaterI):
    ...     pass
    >>> EaterI().eat('steak')
    Traceback (most recent call last):
      . . .
    NotImplementedError
    >>> EaterI().batch_eat(['steak', 'peas'])
    Traceback (most recent call last):
      . . .
    NotImplementedError

It's ok to use intermediate abstract classes:

    >>> class AbstractEater(EaterI):
    ...     pass

    >>> class GoodEater3(AbstractEater):
    ...     def eat(self, food):
    ...         return 'yum'
    ...
    >>> GoodEater3().eat('steak')
    'yum'
    >>> GoodEater3().batch_eat(['steak', 'peas'])
    ['yum', 'yum']

    >>> class GoodEater4(AbstractEater):
    ...     def batch_eat(self, foods):
    ...         return ['yum' for food in foods]
    >>> GoodEater4().eat('steak')
    'yum'
    >>> GoodEater4().batch_eat(['steak', 'peas'])
    ['yum', 'yum']

    >>> class BadEater2(AbstractEater):
    ...     pass
    >>> BadEater2().eat('steak')
    Traceback (most recent call last):
      . . .
    NotImplementedError
    >>> BadEater2().batch_eat(['steak', 'peas'])
    Traceback (most recent call last):
      . . .
    NotImplementedError

Here's some extra tests:

    >>> class A(object):
    ...     def f(x): pass
    >>> class B(A):
    ...     def f(x): pass
    >>> class C(A): pass
    >>> class D(B): pass

    >>> overridden(A().f)
    False
    >>> overridden(B().f)
    True
    >>> overridden(C().f)
    False
    >>> overridden(D().f)
    True

It works for classic classes, too:

    >>> class A:
    ...     def f(x): pass
    >>> class B(A):
    ...     def f(x): pass
    >>> class C(A): pass
    >>> class D(B): pass
    >>> overridden(A().f)
    False
    >>> overridden(B().f)
    True
    >>> overridden(C().f)
    False
    >>> overridden(D().f)
    True


read_str()
~~~~~~~~~~~~
    >>> from nltk.internals import read_str

Test valid scenarios

    >>> read_str("'valid string'", 0)
    ('valid string', 14)

Now test invalid scenarios

    >>> read_str("should error", 0)
    Traceback (most recent call last):
    ...
    nltk.internals.ReadError: Expected open quote at 0
    >>> read_str("'should error", 0)
    Traceback (most recent call last):
    ...
    nltk.internals.ReadError: Expected close quote at 1