Spaces:
Sleeping
Sleeping
File size: 20,076 Bytes
d916065 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 |
.. Copyright (C) 2001-2023 NLTK Project
.. For license information, see LICENSE.TXT
================================
Discourse Representation Theory
================================
>>> from nltk.sem import logic
>>> from nltk.inference import TableauProver
Overview
========
A DRS can be created with the ``DRS()`` constructor. This takes two arguments: a list of
discourse referents and list of conditions. .
>>> from nltk.sem.drt import *
>>> dexpr = DrtExpression.fromstring
>>> man_x = dexpr('man(x)')
>>> walk_x = dexpr('walk(x)')
>>> x = dexpr('x')
>>> print(DRS([x], [man_x, walk_x]))
([x],[man(x), walk(x)])
The ``parse()`` method can also be applied directly to DRS
expressions, which allows them to be specified more
easily.
>>> drs1 = dexpr('([x],[man(x),walk(x)])')
>>> print(drs1)
([x],[man(x), walk(x)])
DRSs can be *merged* using the ``+`` operator.
>>> drs2 = dexpr('([y],[woman(y),stop(y)])')
>>> drs3 = drs1 + drs2
>>> print(drs3)
(([x],[man(x), walk(x)]) + ([y],[woman(y), stop(y)]))
>>> print(drs3.simplify())
([x,y],[man(x), walk(x), woman(y), stop(y)])
We can embed DRSs as components of an ``implies`` condition.
>>> s = '([], [(%s -> %s)])' % (drs1, drs2)
>>> print(dexpr(s))
([],[(([x],[man(x), walk(x)]) -> ([y],[woman(y), stop(y)]))])
The ``fol()`` method converts DRSs into FOL formulae.
>>> print(dexpr(r'([x],[man(x), walks(x)])').fol())
exists x.(man(x) & walks(x))
>>> print(dexpr(r'([],[(([x],[man(x)]) -> ([],[walks(x)]))])').fol())
all x.(man(x) -> walks(x))
In order to visualize a DRS, the ``pretty_format()`` method can be used.
>>> print(drs3.pretty_format())
_________ __________
| x | | y |
(|---------| + |----------|)
| man(x) | | woman(y) |
| walk(x) | | stop(y) |
|_________| |__________|
Parse to semantics
------------------
..
>>> logic._counter._value = 0
DRSs can be used for building compositional semantics in a feature
based grammar. To specify that we want to use DRSs, the appropriate
logic parser needs be passed as a parameter to ``load_earley()``
>>> from nltk.parse import load_parser
>>> from nltk.sem.drt import DrtParser
>>> parser = load_parser('grammars/book_grammars/drt.fcfg', trace=0, logic_parser=DrtParser())
>>> for tree in parser.parse('a dog barks'.split()):
... print(tree.label()['SEM'].simplify())
...
([x],[dog(x), bark(x)])
Alternatively, a ``FeatStructReader`` can be passed with the ``logic_parser`` set on it
>>> from nltk.featstruct import FeatStructReader
>>> from nltk.grammar import FeatStructNonterminal
>>> parser = load_parser('grammars/book_grammars/drt.fcfg', trace=0, fstruct_reader=FeatStructReader(fdict_class=FeatStructNonterminal, logic_parser=DrtParser()))
>>> for tree in parser.parse('every girl chases a dog'.split()):
... print(tree.label()['SEM'].simplify().normalize())
...
([],[(([z1],[girl(z1)]) -> ([z2],[dog(z2), chase(z1,z2)]))])
Unit Tests
==========
Parser
------
>>> print(dexpr(r'([x,y],[sees(x,y)])'))
([x,y],[sees(x,y)])
>>> print(dexpr(r'([x],[man(x), walks(x)])'))
([x],[man(x), walks(x)])
>>> print(dexpr(r'\x.([],[man(x), walks(x)])'))
\x.([],[man(x), walks(x)])
>>> print(dexpr(r'\x.\y.([],[sees(x,y)])'))
\x y.([],[sees(x,y)])
>>> print(dexpr(r'([x,y],[(x = y)])'))
([x,y],[(x = y)])
>>> print(dexpr(r'([x,y],[(x != y)])'))
([x,y],[-(x = y)])
>>> print(dexpr(r'\x.([],[walks(x)])(john)'))
(\x.([],[walks(x)]))(john)
>>> print(dexpr(r'\R.\x.([],[big(x,R)])(\y.([],[mouse(y)]))'))
(\R x.([],[big(x,R)]))(\y.([],[mouse(y)]))
>>> print(dexpr(r'(([x],[walks(x)]) + ([y],[runs(y)]))'))
(([x],[walks(x)]) + ([y],[runs(y)]))
>>> print(dexpr(r'(([x,y],[walks(x), jumps(y)]) + (([z],[twos(z)]) + ([w],[runs(w)])))'))
(([x,y],[walks(x), jumps(y)]) + ([z],[twos(z)]) + ([w],[runs(w)]))
>>> print(dexpr(r'((([],[walks(x)]) + ([],[twos(x)])) + ([],[runs(x)]))'))
(([],[walks(x)]) + ([],[twos(x)]) + ([],[runs(x)]))
>>> print(dexpr(r'((([],[walks(x)]) + ([],[runs(x)])) + (([],[threes(x)]) + ([],[fours(x)])))'))
(([],[walks(x)]) + ([],[runs(x)]) + ([],[threes(x)]) + ([],[fours(x)]))
>>> print(dexpr(r'(([],[walks(x)]) -> ([],[runs(x)]))'))
(([],[walks(x)]) -> ([],[runs(x)]))
>>> print(dexpr(r'([x],[PRO(x), sees(John,x)])'))
([x],[PRO(x), sees(John,x)])
>>> print(dexpr(r'([x],[man(x), -([],[walks(x)])])'))
([x],[man(x), -([],[walks(x)])])
>>> print(dexpr(r'([],[(([x],[man(x)]) -> ([],[walks(x)]))])'))
([],[(([x],[man(x)]) -> ([],[walks(x)]))])
>>> print(dexpr(r'DRS([x],[walk(x)])'))
([x],[walk(x)])
>>> print(dexpr(r'DRS([x][walk(x)])'))
([x],[walk(x)])
>>> print(dexpr(r'([x][walk(x)])'))
([x],[walk(x)])
``simplify()``
--------------
>>> print(dexpr(r'\x.([],[man(x), walks(x)])(john)').simplify())
([],[man(john), walks(john)])
>>> print(dexpr(r'\x.\y.([z],[dog(z),sees(x,y)])(john)(mary)').simplify())
([z],[dog(z), sees(john,mary)])
>>> print(dexpr(r'\R x.([],[big(x,R)])(\y.([],[mouse(y)]))').simplify())
\x.([],[big(x,\y.([],[mouse(y)]))])
>>> print(dexpr(r'(([x],[walks(x)]) + ([y],[runs(y)]))').simplify())
([x,y],[walks(x), runs(y)])
>>> print(dexpr(r'(([x,y],[walks(x), jumps(y)]) + (([z],[twos(z)]) + ([w],[runs(w)])))').simplify())
([w,x,y,z],[walks(x), jumps(y), twos(z), runs(w)])
>>> print(dexpr(r'((([],[walks(x)]) + ([],[runs(x)]) + ([],[threes(x)]) + ([],[fours(x)])))').simplify())
([],[walks(x), runs(x), threes(x), fours(x)])
>>> dexpr(r'([x],[man(x)])+([x],[walks(x)])').simplify() == \
... dexpr(r'([x,z1],[man(x), walks(z1)])')
True
>>> dexpr(r'([y],[boy(y), (([x],[dog(x)]) -> ([],[chase(x,y)]))])+([x],[run(x)])').simplify() == \
... dexpr(r'([y,z1],[boy(y), (([x],[dog(x)]) -> ([],[chase(x,y)])), run(z1)])')
True
>>> dexpr(r'\Q.(([x],[john(x),walks(x)]) + Q)(([x],[PRO(x),leaves(x)]))').simplify() == \
... dexpr(r'([x,z1],[john(x), walks(x), PRO(z1), leaves(z1)])')
True
>>> logic._counter._value = 0
>>> print(dexpr('([],[(([x],[dog(x)]) -> ([e,y],[boy(y), chase(e), subj(e,x), obj(e,y)]))])+([e,x],[PRO(x), run(e), subj(e,x)])').simplify().normalize().normalize())
([e02,z5],[(([z3],[dog(z3)]) -> ([e01,z4],[boy(z4), chase(e01), subj(e01,z3), obj(e01,z4)])), PRO(z5), run(e02), subj(e02,z5)])
``fol()``
-----------
>>> print(dexpr(r'([x,y],[sees(x,y)])').fol())
exists x y.sees(x,y)
>>> print(dexpr(r'([x],[man(x), walks(x)])').fol())
exists x.(man(x) & walks(x))
>>> print(dexpr(r'\x.([],[man(x), walks(x)])').fol())
\x.(man(x) & walks(x))
>>> print(dexpr(r'\x y.([],[sees(x,y)])').fol())
\x y.sees(x,y)
>>> print(dexpr(r'\x.([],[walks(x)])(john)').fol())
\x.walks(x)(john)
>>> print(dexpr(r'\R x.([],[big(x,R)])(\y.([],[mouse(y)]))').fol())
(\R x.big(x,R))(\y.mouse(y))
>>> print(dexpr(r'(([x],[walks(x)]) + ([y],[runs(y)]))').fol())
(exists x.walks(x) & exists y.runs(y))
>>> print(dexpr(r'(([],[walks(x)]) -> ([],[runs(x)]))').fol())
(walks(x) -> runs(x))
>>> print(dexpr(r'([x],[PRO(x), sees(John,x)])').fol())
exists x.(PRO(x) & sees(John,x))
>>> print(dexpr(r'([x],[man(x), -([],[walks(x)])])').fol())
exists x.(man(x) & -walks(x))
>>> print(dexpr(r'([],[(([x],[man(x)]) -> ([],[walks(x)]))])').fol())
all x.(man(x) -> walks(x))
>>> print(dexpr(r'([x],[man(x) | walks(x)])').fol())
exists x.(man(x) | walks(x))
>>> print(dexpr(r'P(x) + ([x],[walks(x)])').fol())
(P(x) & exists x.walks(x))
``resolve_anaphora()``
----------------------
>>> from nltk.sem.drt import AnaphoraResolutionException
>>> print(resolve_anaphora(dexpr(r'([x,y,z],[dog(x), cat(y), walks(z), PRO(z)])')))
([x,y,z],[dog(x), cat(y), walks(z), (z = [x,y])])
>>> print(resolve_anaphora(dexpr(r'([],[(([x],[dog(x)]) -> ([y],[walks(y), PRO(y)]))])')))
([],[(([x],[dog(x)]) -> ([y],[walks(y), (y = x)]))])
>>> print(resolve_anaphora(dexpr(r'(([x,y],[]) + ([],[PRO(x)]))')).simplify())
([x,y],[(x = y)])
>>> try: print(resolve_anaphora(dexpr(r'([x],[walks(x), PRO(x)])')))
... except AnaphoraResolutionException as e: print(e)
Variable 'x' does not resolve to anything.
>>> print(resolve_anaphora(dexpr('([e01,z6,z7],[boy(z6), PRO(z7), run(e01), subj(e01,z7)])')))
([e01,z6,z7],[boy(z6), (z7 = z6), run(e01), subj(e01,z7)])
``equiv()``:
----------------
>>> a = dexpr(r'([x],[man(x), walks(x)])')
>>> b = dexpr(r'([x],[walks(x), man(x)])')
>>> print(a.equiv(b, TableauProver()))
True
``replace()``:
--------------
>>> a = dexpr(r'a')
>>> w = dexpr(r'w')
>>> x = dexpr(r'x')
>>> y = dexpr(r'y')
>>> z = dexpr(r'z')
replace bound
-------------
>>> print(dexpr(r'([x],[give(x,y,z)])').replace(x.variable, a, False))
([x],[give(x,y,z)])
>>> print(dexpr(r'([x],[give(x,y,z)])').replace(x.variable, a, True))
([a],[give(a,y,z)])
replace unbound
---------------
>>> print(dexpr(r'([x],[give(x,y,z)])').replace(y.variable, a, False))
([x],[give(x,a,z)])
>>> print(dexpr(r'([x],[give(x,y,z)])').replace(y.variable, a, True))
([x],[give(x,a,z)])
replace unbound with bound
--------------------------
>>> dexpr(r'([x],[give(x,y,z)])').replace(y.variable, x, False) == \
... dexpr('([z1],[give(z1,x,z)])')
True
>>> dexpr(r'([x],[give(x,y,z)])').replace(y.variable, x, True) == \
... dexpr('([z1],[give(z1,x,z)])')
True
replace unbound with unbound
----------------------------
>>> print(dexpr(r'([x],[give(x,y,z)])').replace(y.variable, z, False))
([x],[give(x,z,z)])
>>> print(dexpr(r'([x],[give(x,y,z)])').replace(y.variable, z, True))
([x],[give(x,z,z)])
replace unbound
---------------
>>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(z.variable, a, False))
(([x],[P(x,y,a)]) + ([y],[Q(x,y,a)]))
>>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(z.variable, a, True))
(([x],[P(x,y,a)]) + ([y],[Q(x,y,a)]))
replace bound
-------------
>>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(x.variable, a, False))
(([x],[P(x,y,z)]) + ([y],[Q(x,y,z)]))
>>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(x.variable, a, True))
(([a],[P(a,y,z)]) + ([y],[Q(a,y,z)]))
replace unbound with unbound
----------------------------
>>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(z.variable, a, False))
(([x],[P(x,y,a)]) + ([y],[Q(x,y,a)]))
>>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(z.variable, a, True))
(([x],[P(x,y,a)]) + ([y],[Q(x,y,a)]))
replace unbound with bound on same side
---------------------------------------
>>> dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,w)])').replace(z.variable, x, False) == \
... dexpr(r'(([z1],[P(z1,y,x)]) + ([y],[Q(z1,y,w)]))')
True
>>> dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,w)])').replace(z.variable, x, True) == \
... dexpr(r'(([z1],[P(z1,y,x)]) + ([y],[Q(z1,y,w)]))')
True
replace unbound with bound on other side
----------------------------------------
>>> dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,w)])').replace(w.variable, x, False) == \
... dexpr(r'(([z1],[P(z1,y,z)]) + ([y],[Q(z1,y,x)]))')
True
>>> dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,w)])').replace(w.variable, x, True) == \
... dexpr(r'(([z1],[P(z1,y,z)]) + ([y],[Q(z1,y,x)]))')
True
replace unbound with double bound
---------------------------------
>>> dexpr(r'([x],[P(x,y,z)])+([x],[Q(x,y,w)])').replace(z.variable, x, False) == \
... dexpr(r'(([z1],[P(z1,y,x)]) + ([z1],[Q(z1,y,w)]))')
True
>>> dexpr(r'([x],[P(x,y,z)])+([x],[Q(x,y,w)])').replace(z.variable, x, True) == \
... dexpr(r'(([z1],[P(z1,y,x)]) + ([z1],[Q(z1,y,w)]))')
True
regression tests
----------------
>>> d = dexpr('([x],[A(c), ([y],[B(x,y,z,a)])->([z],[C(x,y,z,a)])])')
>>> print(d)
([x],[A(c), (([y],[B(x,y,z,a)]) -> ([z],[C(x,y,z,a)]))])
>>> print(d.pretty_format())
____________________________________
| x |
|------------------------------------|
| A(c) |
| ____________ ____________ |
| | y | | z | |
| (|------------| -> |------------|) |
| | B(x,y,z,a) | | C(x,y,z,a) | |
| |____________| |____________| |
|____________________________________|
>>> print(str(d))
([x],[A(c), (([y],[B(x,y,z,a)]) -> ([z],[C(x,y,z,a)]))])
>>> print(d.fol())
exists x.(A(c) & all y.(B(x,y,z,a) -> exists z.C(x,y,z,a)))
>>> print(d.replace(Variable('a'), DrtVariableExpression(Variable('r'))))
([x],[A(c), (([y],[B(x,y,z,r)]) -> ([z],[C(x,y,z,r)]))])
>>> print(d.replace(Variable('x'), DrtVariableExpression(Variable('r'))))
([x],[A(c), (([y],[B(x,y,z,a)]) -> ([z],[C(x,y,z,a)]))])
>>> print(d.replace(Variable('y'), DrtVariableExpression(Variable('r'))))
([x],[A(c), (([y],[B(x,y,z,a)]) -> ([z],[C(x,y,z,a)]))])
>>> print(d.replace(Variable('z'), DrtVariableExpression(Variable('r'))))
([x],[A(c), (([y],[B(x,y,r,a)]) -> ([z],[C(x,y,z,a)]))])
>>> print(d.replace(Variable('x'), DrtVariableExpression(Variable('r')), True))
([r],[A(c), (([y],[B(r,y,z,a)]) -> ([z],[C(r,y,z,a)]))])
>>> print(d.replace(Variable('y'), DrtVariableExpression(Variable('r')), True))
([x],[A(c), (([r],[B(x,r,z,a)]) -> ([z],[C(x,r,z,a)]))])
>>> print(d.replace(Variable('z'), DrtVariableExpression(Variable('r')), True))
([x],[A(c), (([y],[B(x,y,r,a)]) -> ([r],[C(x,y,r,a)]))])
>>> print(d == dexpr('([l],[A(c), ([m],[B(l,m,z,a)])->([n],[C(l,m,n,a)])])'))
True
>>> d = dexpr('([],[([x,y],[B(x,y,h), ([a,b],[dee(x,a,g)])])->([z,w],[cee(x,y,f), ([c,d],[E(x,c,d,e)])])])')
>>> sorted(d.free())
[Variable('B'), Variable('E'), Variable('e'), Variable('f'), Variable('g'), Variable('h')]
>>> sorted(d.variables())
[Variable('B'), Variable('E'), Variable('e'), Variable('f'), Variable('g'), Variable('h')]
>>> sorted(d.get_refs(True))
[Variable('a'), Variable('b'), Variable('c'), Variable('d'), Variable('w'), Variable('x'), Variable('y'), Variable('z')]
>>> sorted(d.conds[0].get_refs(False))
[Variable('x'), Variable('y')]
>>> print(dexpr('([x,y],[A(x,y), (x=y), ([],[B(x,y)])->([],[C(x,y)]), ([x,y],[D(x,y)])->([],[E(x,y)]), ([],[F(x,y)])->([x,y],[G(x,y)])])').eliminate_equality())
([x],[A(x,x), (([],[B(x,x)]) -> ([],[C(x,x)])), (([x,y],[D(x,y)]) -> ([],[E(x,y)])), (([],[F(x,x)]) -> ([x,y],[G(x,y)]))])
>>> print(dexpr('([x,y],[A(x,y), (x=y)]) -> ([],[B(x,y)])').eliminate_equality())
(([x],[A(x,x)]) -> ([],[B(x,x)]))
>>> print(dexpr('([x,y],[A(x,y)]) -> ([],[B(x,y), (x=y)])').eliminate_equality())
(([x,y],[A(x,y)]) -> ([],[B(x,x)]))
>>> print(dexpr('([x,y],[A(x,y), (x=y), ([],[B(x,y)])])').eliminate_equality())
([x],[A(x,x), ([],[B(x,x)])])
>>> print(dexpr('([x,y],[A(x,y), ([],[B(x,y), (x=y)])])').eliminate_equality())
([x,y],[A(x,y), ([],[B(x,x)])])
>>> print(dexpr('([z8 z9 z10],[A(z8), z8=z10, z9=z10, B(z9), C(z10), D(z10)])').eliminate_equality())
([z9],[A(z9), B(z9), C(z9), D(z9)])
>>> print(dexpr('([x,y],[A(x,y), (x=y), ([],[B(x,y)]), ([x,y],[C(x,y)])])').eliminate_equality())
([x],[A(x,x), ([],[B(x,x)]), ([x,y],[C(x,y)])])
>>> print(dexpr('([x,y],[A(x,y)]) + ([],[B(x,y), (x=y)]) + ([],[C(x,y)])').eliminate_equality())
([x],[A(x,x), B(x,x), C(x,x)])
>>> print(dexpr('([x,y],[B(x,y)])+([x,y],[C(x,y)])').replace(Variable('y'), DrtVariableExpression(Variable('x'))))
(([x,y],[B(x,y)]) + ([x,y],[C(x,y)]))
>>> print(dexpr('(([x,y],[B(x,y)])+([],[C(x,y)]))+([],[D(x,y)])').replace(Variable('y'), DrtVariableExpression(Variable('x'))))
(([x,y],[B(x,y)]) + ([],[C(x,y)]) + ([],[D(x,y)]))
>>> print(dexpr('(([],[B(x,y)])+([],[C(x,y)]))+([],[D(x,y)])').replace(Variable('y'), DrtVariableExpression(Variable('x'))))
(([],[B(x,x)]) + ([],[C(x,x)]) + ([],[D(x,x)]))
>>> print(dexpr('(([],[B(x,y), ([x,y],[A(x,y)])])+([],[C(x,y)]))+([],[D(x,y)])').replace(Variable('y'), DrtVariableExpression(Variable('x'))).normalize())
(([],[B(z3,z1), ([z2,z3],[A(z3,z2)])]) + ([],[C(z3,z1)]) + ([],[D(z3,z1)]))
Parse errors
============
>>> def parse_error(drtstring):
... try: dexpr(drtstring)
... except logic.LogicalExpressionException as e: print(e)
>>> parse_error(r'')
End of input found. Expression expected.
<BLANKLINE>
^
>>> parse_error(r'(')
End of input found. Expression expected.
(
^
>>> parse_error(r'()')
Unexpected token: ')'. Expression expected.
()
^
>>> parse_error(r'([')
End of input found. Expected token ']'.
([
^
>>> parse_error(r'([,')
',' is an illegal variable name. Constants may not be quantified.
([,
^
>>> parse_error(r'([x,')
End of input found. Variable expected.
([x,
^
>>> parse_error(r'([]')
End of input found. Expected token '['.
([]
^
>>> parse_error(r'([][')
End of input found. Expected token ']'.
([][
^
>>> parse_error(r'([][,')
Unexpected token: ','. Expression expected.
([][,
^
>>> parse_error(r'([][]')
End of input found. Expected token ')'.
([][]
^
>>> parse_error(r'([x][man(x)]) |')
End of input found. Expression expected.
([x][man(x)]) |
^
Pretty Printing
===============
>>> dexpr(r"([],[])").pretty_print()
__
| |
|--|
|__|
>>> dexpr(r"([],[([x],[big(x), dog(x)]) -> ([],[bark(x)]) -([x],[walk(x)])])").pretty_print()
_____________________________
| |
|-----------------------------|
| ________ _________ |
| | x | | | |
| (|--------| -> |---------|) |
| | big(x) | | bark(x) | |
| | dog(x) | |_________| |
| |________| |
| _________ |
| | x | |
| __ |---------| |
| | | walk(x) | |
| |_________| |
|_____________________________|
>>> dexpr(r"([x,y],[x=y]) + ([z],[dog(z), walk(z)])").pretty_print()
_________ _________
| x y | | z |
(|---------| + |---------|)
| (x = y) | | dog(z) |
|_________| | walk(z) |
|_________|
>>> dexpr(r"([],[([x],[]) | ([y],[]) | ([z],[dog(z), walk(z)])])").pretty_print()
_______________________________
| |
|-------------------------------|
| ___ ___ _________ |
| | x | | y | | z | |
| (|---| | |---| | |---------|) |
| |___| |___| | dog(z) | |
| | walk(z) | |
| |_________| |
|_______________________________|
>>> dexpr(r"\P.\Q.(([x],[]) + P(x) + Q(x))(\x.([],[dog(x)]))").pretty_print()
___ ________
\ | x | \ | |
/\ P Q.(|---| + P(x) + Q(x))( /\ x.|--------|)
|___| | dog(x) |
|________|
|