File size: 17,923 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
.. Copyright (C) 2001-2023 NLTK Project
.. For license information, see LICENSE.TXT


==================
Discourse Checking

==================

    >>> from nltk import *
    >>> from nltk.sem import logic
    >>> logic._counter._value = 0

Setup

=====

    >>> from nltk.test.childes_fixt import setup_module
    >>> setup_module()

Introduction

============

The NLTK discourse module makes it possible to test consistency and
redundancy of simple discourses, using theorem-proving and
model-building from `nltk.inference`.

The ``DiscourseTester`` constructor takes a list of sentences as a
parameter.

    >>> dt = DiscourseTester(['a boxer walks', 'every boxer chases a girl'])

The ``DiscourseTester`` parses each sentence into a list of logical
forms.  Once we have created ``DiscourseTester`` object, we can
inspect various properties of the discourse. First off, we might want
to double-check what sentences are currently stored as the discourse.

    >>> dt.sentences()
    s0: a boxer walks
    s1: every boxer chases a girl

As you will see, each sentence receives an identifier `s`\ :subscript:`i`.
We might also want to check what grammar the ``DiscourseTester`` is
using (by default, ``book_grammars/discourse.fcfg``):

    >>> dt.grammar()
    % start S
    # Grammar Rules
    S[SEM = <app(?subj,?vp)>] -> NP[NUM=?n,SEM=?subj] VP[NUM=?n,SEM=?vp]
    NP[NUM=?n,SEM=<app(?det,?nom)> ] -> Det[NUM=?n,SEM=?det]  Nom[NUM=?n,SEM=?nom]
    NP[LOC=?l,NUM=?n,SEM=?np] -> PropN[LOC=?l,NUM=?n,SEM=?np]
    ...

A different grammar can be invoked by using the optional ``gramfile``
parameter when a ``DiscourseTester`` object is created.

Readings and Threads

====================

Depending on
the grammar used, we may find some sentences have more than one
logical form. To check this, use the ``readings()`` method. Given a
sentence identifier of the form `s`\ :subscript:`i`, each reading of
that sentence is given an identifier `s`\ :sub:`i`-`r`\ :sub:`j`.


    >>> dt.readings()
    <BLANKLINE>
    s0 readings:
    <BLANKLINE>
    s0-r0: exists z1.(boxer(z1) & walk(z1))
    s0-r1: exists z1.(boxerdog(z1) & walk(z1))
    <BLANKLINE>
    s1 readings:
    <BLANKLINE>
    s1-r0: all z2.(boxer(z2) -> exists z3.(girl(z3) & chase(z2,z3)))
    s1-r1: all z1.(boxerdog(z1) -> exists z2.(girl(z2) & chase(z1,z2)))


In this case, the only source of ambiguity lies in the word *boxer*,
which receives two translations: ``boxer`` and ``boxerdog``. The
intention is that one of these corresponds to the ``person`` sense and
one to the ``dog`` sense. In principle, we would also expect to see a
quantifier scope ambiguity in ``s1``. However, the simple grammar we
are using, namely `sem4.fcfg <sem4.fcfg>`_, doesn't support quantifier
scope ambiguity.

We can also investigate the readings of a specific sentence:

    >>> dt.readings('a boxer walks')
    The sentence 'a boxer walks' has these readings:
        exists x.(boxer(x) & walk(x))
        exists x.(boxerdog(x) & walk(x))

Given that each sentence is two-ways ambiguous, we potentially have
four different discourse 'threads', taking all combinations of
readings. To see these, specify the ``threaded=True`` parameter on
the ``readings()`` method. Again, each thread is assigned an
identifier of the form `d`\ :sub:`i`. Following the identifier is a
list of the readings that constitute that thread.

    >>> dt.readings(threaded=True)
    d0: ['s0-r0', 's1-r0']
    d1: ['s0-r0', 's1-r1']
    d2: ['s0-r1', 's1-r0']
    d3: ['s0-r1', 's1-r1']

Of course, this simple-minded approach doesn't scale: a discourse with, say, three
sentences, each of which has 3 readings, will generate 27 different
threads. It is an interesting exercise to consider how to manage
discourse ambiguity more efficiently.

Checking Consistency

====================

Now, we can check whether some or all of the discourse threads are
consistent, using the ``models()`` method. With no parameter, this
method will try to find a model for every discourse thread in the
current discourse. However, we can also specify just one thread, say ``d1``.

    >>> dt.models('d1')
    --------------------------------------------------------------------------------
    Model for Discourse Thread d1
    --------------------------------------------------------------------------------
    % number = 1
    % seconds = 0
    <BLANKLINE>
    % Interpretation of size 2
    <BLANKLINE>
    c1 = 0.
    <BLANKLINE>
    f1(0) = 0.
    f1(1) = 0.
    <BLANKLINE>
      boxer(0).
    - boxer(1).
    <BLANKLINE>
    - boxerdog(0).
    - boxerdog(1).
    <BLANKLINE>
    - girl(0).
    - girl(1).
    <BLANKLINE>
      walk(0).
    - walk(1).
    <BLANKLINE>
    - chase(0,0).
    - chase(0,1).
    - chase(1,0).
    - chase(1,1).
    <BLANKLINE>
    Consistent discourse: d1 ['s0-r0', 's1-r1']:
        s0-r0: exists z1.(boxer(z1) & walk(z1))
        s1-r1: all z1.(boxerdog(z1) -> exists z2.(girl(z2) & chase(z1,z2)))
    <BLANKLINE>

There are various formats for rendering **Mace4** models --- here,
we have used the 'cooked' format (which is intended to be
human-readable). There are a number of points to note.

#. The entities in the domain are all treated as non-negative
   integers. In this case, there are only two entities, ``0`` and
   ``1``.

#. The ``-`` symbol indicates negation. So ``0`` is the only
   ``boxerdog`` and the only thing that ``walk``\ s. Nothing is a
   ``boxer``, or a ``girl`` or in the ``chase`` relation. Thus the
   universal sentence is vacuously true.

#. ``c1`` is an introduced constant that denotes ``0``.

#. ``f1`` is a Skolem function, but it plays no significant role in
   this model.


We might want to now add another sentence to the discourse, and there
is method ``add_sentence()`` for doing just this.

    >>> dt.add_sentence('John is a boxer')
    >>> dt.sentences()
    s0: a boxer walks
    s1: every boxer chases a girl
    s2: John is a boxer

We can now test all the properties as before; here, we just show a
couple of them.

    >>> dt.readings()
    <BLANKLINE>
    s0 readings:
    <BLANKLINE>
    s0-r0: exists z1.(boxer(z1) & walk(z1))
    s0-r1: exists z1.(boxerdog(z1) & walk(z1))
    <BLANKLINE>
    s1 readings:
    <BLANKLINE>
    s1-r0: all z1.(boxer(z1) -> exists z2.(girl(z2) & chase(z1,z2)))
    s1-r1: all z1.(boxerdog(z1) -> exists z2.(girl(z2) & chase(z1,z2)))
    <BLANKLINE>
    s2 readings:
    <BLANKLINE>
    s2-r0: boxer(John)
    s2-r1: boxerdog(John)
    >>> dt.readings(threaded=True)
    d0: ['s0-r0', 's1-r0', 's2-r0']
    d1: ['s0-r0', 's1-r0', 's2-r1']
    d2: ['s0-r0', 's1-r1', 's2-r0']
    d3: ['s0-r0', 's1-r1', 's2-r1']
    d4: ['s0-r1', 's1-r0', 's2-r0']
    d5: ['s0-r1', 's1-r0', 's2-r1']
    d6: ['s0-r1', 's1-r1', 's2-r0']
    d7: ['s0-r1', 's1-r1', 's2-r1']

If you are interested in a particular thread, the ``expand_threads()``
method will remind you of what readings it consists of:

    >>> thread = dt.expand_threads('d1')
    >>> for rid, reading in thread:
    ...     print(rid, str(reading.normalize()))
    s0-r0 exists z1.(boxer(z1) & walk(z1))
    s1-r0 all z1.(boxer(z1) -> exists z2.(girl(z2) & chase(z1,z2)))
    s2-r1 boxerdog(John)

Suppose we have already defined a discourse, as follows:

    >>> dt = DiscourseTester(['A student dances', 'Every student is a person'])

Now, when we add a new sentence, is it consistent with what we already
have? The `` consistchk=True`` parameter of ``add_sentence()`` allows
us to check:

    >>> dt.add_sentence('No person dances', consistchk=True)
    Inconsistent discourse: d0 ['s0-r0', 's1-r0', 's2-r0']:
        s0-r0: exists z1.(student(z1) & dance(z1))
        s1-r0: all z1.(student(z1) -> person(z1))
        s2-r0: -exists z1.(person(z1) & dance(z1))
    <BLANKLINE>
    >>> dt.readings()
    <BLANKLINE>
    s0 readings:
    <BLANKLINE>
    s0-r0: exists z1.(student(z1) & dance(z1))
    <BLANKLINE>
    s1 readings:
    <BLANKLINE>
    s1-r0: all z1.(student(z1) -> person(z1))
    <BLANKLINE>
    s2 readings:
    <BLANKLINE>
    s2-r0: -exists z1.(person(z1) & dance(z1))

So let's retract the inconsistent sentence:

    >>> dt.retract_sentence('No person dances', verbose=True)
    Current sentences are
    s0: A student dances
    s1: Every student is a person

We can now verify that result is consistent.

    >>> dt.models()
    --------------------------------------------------------------------------------
    Model for Discourse Thread d0
    --------------------------------------------------------------------------------
    % number = 1
    % seconds = 0
    <BLANKLINE>
    % Interpretation of size 2
    <BLANKLINE>
    c1 = 0.
    <BLANKLINE>
      dance(0).
    - dance(1).
    <BLANKLINE>
      person(0).
    - person(1).
    <BLANKLINE>
      student(0).
    - student(1).
    <BLANKLINE>
    Consistent discourse: d0 ['s0-r0', 's1-r0']:
        s0-r0: exists z1.(student(z1) & dance(z1))
        s1-r0: all z1.(student(z1) -> person(z1))
    <BLANKLINE>

Checking Informativity

======================

Let's assume that we are still trying to extend the discourse *A

student dances.* *Every student is a person.* We add a new sentence,
but this time, we check whether it is informative with respect to what
has gone before.

    >>> dt.add_sentence('A person dances', informchk=True)
    Sentence 'A person dances' under reading 'exists x.(person(x) & dance(x))':
    Not informative relative to thread 'd0'

In fact, we are just checking whether the new sentence is entailed by
the preceding discourse.

    >>> dt.models()
    --------------------------------------------------------------------------------
    Model for Discourse Thread d0
    --------------------------------------------------------------------------------
    % number = 1
    % seconds = 0
    <BLANKLINE>
    % Interpretation of size 2
    <BLANKLINE>
    c1 = 0.
    <BLANKLINE>
    c2 = 0.
    <BLANKLINE>
      dance(0).
    - dance(1).
    <BLANKLINE>
      person(0).
    - person(1).
    <BLANKLINE>
      student(0).
    - student(1).
    <BLANKLINE>
    Consistent discourse: d0 ['s0-r0', 's1-r0', 's2-r0']:
        s0-r0: exists z1.(student(z1) & dance(z1))
        s1-r0: all z1.(student(z1) -> person(z1))
        s2-r0: exists z1.(person(z1) & dance(z1))
    <BLANKLINE>



Adding Background Knowledge

===========================

Let's build a new discourse, and look at the readings of the component sentences:

    >>> dt = DiscourseTester(['Vincent is a boxer', 'Fido is a boxer', 'Vincent is married', 'Fido barks'])
    >>> dt.readings()
    <BLANKLINE>
    s0 readings:
    <BLANKLINE>
    s0-r0: boxer(Vincent)
    s0-r1: boxerdog(Vincent)
    <BLANKLINE>
    s1 readings:
    <BLANKLINE>
    s1-r0: boxer(Fido)
    s1-r1: boxerdog(Fido)
    <BLANKLINE>
    s2 readings:
    <BLANKLINE>
    s2-r0: married(Vincent)
    <BLANKLINE>
    s3 readings:
    <BLANKLINE>
    s3-r0: bark(Fido)

This gives us a lot of threads:

    >>> dt.readings(threaded=True)
    d0: ['s0-r0', 's1-r0', 's2-r0', 's3-r0']
    d1: ['s0-r0', 's1-r1', 's2-r0', 's3-r0']
    d2: ['s0-r1', 's1-r0', 's2-r0', 's3-r0']
    d3: ['s0-r1', 's1-r1', 's2-r0', 's3-r0']


We can eliminate some of the readings, and hence some of the threads,
by adding background information.

    >>> import nltk.data
    >>> bg = nltk.data.load('grammars/book_grammars/background.fol')
    >>> dt.add_background(bg)
    >>> dt.background()
    all x.(boxerdog(x) -> dog(x))
    all x.(boxer(x) -> person(x))
    all x.-(dog(x) & person(x))
    all x.(married(x) <-> exists y.marry(x,y))
    all x.(bark(x) -> dog(x))
    all x y.(marry(x,y) -> (person(x) & person(y)))
    -(Vincent = Mia)
    -(Vincent = Fido)
    -(Mia = Fido)

The background information allows us to reject three of the threads as
inconsistent. To see what remains, use the ``filter=True`` parameter
on ``readings()``.

    >>> dt.readings(filter=True)
    d1: ['s0-r0', 's1-r1', 's2-r0', 's3-r0']

The ``models()`` method gives us more information about the surviving thread.

    >>> dt.models()
    --------------------------------------------------------------------------------
    Model for Discourse Thread d0
    --------------------------------------------------------------------------------
    No model found!
    <BLANKLINE>
    --------------------------------------------------------------------------------
    Model for Discourse Thread d1
    --------------------------------------------------------------------------------
    % number = 1
    % seconds = 0
    <BLANKLINE>
    % Interpretation of size 3
    <BLANKLINE>
    Fido = 0.
    <BLANKLINE>
    Mia = 1.
    <BLANKLINE>
    Vincent = 2.
    <BLANKLINE>
    f1(0) = 0.
    f1(1) = 0.
    f1(2) = 2.
    <BLANKLINE>
      bark(0).
    - bark(1).
    - bark(2).
    <BLANKLINE>
    - boxer(0).
    - boxer(1).
      boxer(2).
    <BLANKLINE>
      boxerdog(0).
    - boxerdog(1).
    - boxerdog(2).
    <BLANKLINE>
      dog(0).
    - dog(1).
    - dog(2).
    <BLANKLINE>
    - married(0).
    - married(1).
      married(2).
    <BLANKLINE>
    - person(0).
    - person(1).
      person(2).
    <BLANKLINE>
    - marry(0,0).
    - marry(0,1).
    - marry(0,2).
    - marry(1,0).
    - marry(1,1).
    - marry(1,2).
    - marry(2,0).
    - marry(2,1).
      marry(2,2).
    <BLANKLINE>
    --------------------------------------------------------------------------------
    Model for Discourse Thread d2
    --------------------------------------------------------------------------------
    No model found!
    <BLANKLINE>
    --------------------------------------------------------------------------------
    Model for Discourse Thread d3
    --------------------------------------------------------------------------------
    No model found!
    <BLANKLINE>
    Inconsistent discourse: d0 ['s0-r0', 's1-r0', 's2-r0', 's3-r0']:
        s0-r0: boxer(Vincent)
        s1-r0: boxer(Fido)
        s2-r0: married(Vincent)
        s3-r0: bark(Fido)
    <BLANKLINE>
    Consistent discourse: d1 ['s0-r0', 's1-r1', 's2-r0', 's3-r0']:
        s0-r0: boxer(Vincent)
        s1-r1: boxerdog(Fido)
        s2-r0: married(Vincent)
        s3-r0: bark(Fido)
    <BLANKLINE>
    Inconsistent discourse: d2 ['s0-r1', 's1-r0', 's2-r0', 's3-r0']:
        s0-r1: boxerdog(Vincent)
        s1-r0: boxer(Fido)
        s2-r0: married(Vincent)
        s3-r0: bark(Fido)
    <BLANKLINE>
    Inconsistent discourse: d3 ['s0-r1', 's1-r1', 's2-r0', 's3-r0']:
        s0-r1: boxerdog(Vincent)
        s1-r1: boxerdog(Fido)
        s2-r0: married(Vincent)
        s3-r0: bark(Fido)
    <BLANKLINE>


..  This will not be visible in the html output: create a tempdir to
    play in.
    >>> import tempfile, os
    >>> tempdir = tempfile.mkdtemp()
    >>> old_dir = os.path.abspath('.')
    >>> os.chdir(tempdir)

In order to play around with your own version of background knowledge,
you might want to start off with a local copy of ``background.fol``:

    >>> nltk.data.retrieve('grammars/book_grammars/background.fol')
    Retrieving 'nltk:grammars/book_grammars/background.fol', saving to 'background.fol'

After you have modified the file, the ``load_fol()`` function will parse
the strings in the file into expressions of ``nltk.sem.logic``.

    >>> from nltk.inference.discourse import load_fol
    >>> mybg = load_fol(open('background.fol').read())

The result can be loaded as an argument of ``add_background()`` in the
manner shown earlier.

..  This will not be visible in the html output: clean up the tempdir.
    >>> os.chdir(old_dir)
    >>> for f in os.listdir(tempdir):
    ...     os.remove(os.path.join(tempdir, f))
    >>> os.rmdir(tempdir)
    >>> nltk.data.clear_cache()


Regression Testing from book

============================

    >>> logic._counter._value = 0

    >>> from nltk.tag import RegexpTagger
    >>> tagger = RegexpTagger(
    ...     [('^(chases|runs)$', 'VB'),
    ...      ('^(a)$', 'ex_quant'),
    ...      ('^(every)$', 'univ_quant'),
    ...      ('^(dog|boy)$', 'NN'),
    ...      ('^(He)$', 'PRP')
    ... ])
    >>> rc = DrtGlueReadingCommand(depparser=MaltParser(tagger=tagger))
    >>> dt = DiscourseTester(map(str.split, ['Every dog chases a boy', 'He runs']), rc)
    >>> dt.readings()
    <BLANKLINE>
    s0 readings:
    <BLANKLINE>
    s0-r0: ([z2],[boy(z2), (([z5],[dog(z5)]) -> ([],[chases(z5,z2)]))])
    s0-r1: ([],[(([z1],[dog(z1)]) -> ([z2],[boy(z2), chases(z1,z2)]))])
    <BLANKLINE>
    s1 readings:
    <BLANKLINE>
    s1-r0: ([z1],[PRO(z1), runs(z1)])
    >>> dt.readings(show_thread_readings=True)
    d0: ['s0-r0', 's1-r0'] : ([z1,z2],[boy(z1), (([z3],[dog(z3)]) -> ([],[chases(z3,z1)])), (z2 = z1), runs(z2)])
    d1: ['s0-r1', 's1-r0'] : INVALID: AnaphoraResolutionException
    >>> dt.readings(filter=True, show_thread_readings=True)
    d0: ['s0-r0', 's1-r0'] : ([z1,z3],[boy(z1), (([z2],[dog(z2)]) -> ([],[chases(z2,z1)])), (z3 = z1), runs(z3)])

    >>> logic._counter._value = 0

    >>> from nltk.parse import FeatureEarleyChartParser
    >>> from nltk.sem.drt import DrtParser
    >>> grammar = nltk.data.load('grammars/book_grammars/drt.fcfg', logic_parser=DrtParser())
    >>> parser = FeatureEarleyChartParser(grammar, trace=0)
    >>> trees = parser.parse('Angus owns a dog'.split())
    >>> print(list(trees)[0].label()['SEM'].simplify().normalize())
    ([z1,z2],[Angus(z1), dog(z2), own(z1,z2)])