File size: 17,661 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
# Natural Language Toolkit: Distance Metrics
#
# Copyright (C) 2001-2023 NLTK Project
# Author: Edward Loper <[email protected]>
#         Steven Bird <[email protected]>
#         Tom Lippincott <[email protected]>
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT
#

"""

Distance Metrics.



Compute the distance between two items (usually strings).

As metrics, they must satisfy the following three requirements:



1. d(a, a) = 0

2. d(a, b) >= 0

3. d(a, c) <= d(a, b) + d(b, c)

"""

import operator
import warnings


def _edit_dist_init(len1, len2):
    lev = []
    for i in range(len1):
        lev.append([0] * len2)  # initialize 2D array to zero
    for i in range(len1):
        lev[i][0] = i  # column 0: 0,1,2,3,4,...
    for j in range(len2):
        lev[0][j] = j  # row 0: 0,1,2,3,4,...
    return lev


def _last_left_t_init(sigma):
    return {c: 0 for c in sigma}


def _edit_dist_step(

    lev, i, j, s1, s2, last_left, last_right, substitution_cost=1, transpositions=False

):
    c1 = s1[i - 1]
    c2 = s2[j - 1]

    # skipping a character in s1
    a = lev[i - 1][j] + 1
    # skipping a character in s2
    b = lev[i][j - 1] + 1
    # substitution
    c = lev[i - 1][j - 1] + (substitution_cost if c1 != c2 else 0)

    # transposition
    d = c + 1  # never picked by default
    if transpositions and last_left > 0 and last_right > 0:
        d = lev[last_left - 1][last_right - 1] + i - last_left + j - last_right - 1

    # pick the cheapest
    lev[i][j] = min(a, b, c, d)


def edit_distance(s1, s2, substitution_cost=1, transpositions=False):
    """

    Calculate the Levenshtein edit-distance between two strings.

    The edit distance is the number of characters that need to be

    substituted, inserted, or deleted, to transform s1 into s2.  For

    example, transforming "rain" to "shine" requires three steps,

    consisting of two substitutions and one insertion:

    "rain" -> "sain" -> "shin" -> "shine".  These operations could have

    been done in other orders, but at least three steps are needed.



    Allows specifying the cost of substitution edits (e.g., "a" -> "b"),

    because sometimes it makes sense to assign greater penalties to

    substitutions.



    This also optionally allows transposition edits (e.g., "ab" -> "ba"),

    though this is disabled by default.



    :param s1, s2: The strings to be analysed

    :param transpositions: Whether to allow transposition edits

    :type s1: str

    :type s2: str

    :type substitution_cost: int

    :type transpositions: bool

    :rtype: int

    """
    # set up a 2-D array
    len1 = len(s1)
    len2 = len(s2)
    lev = _edit_dist_init(len1 + 1, len2 + 1)

    # retrieve alphabet
    sigma = set()
    sigma.update(s1)
    sigma.update(s2)

    # set up table to remember positions of last seen occurrence in s1
    last_left_t = _last_left_t_init(sigma)

    # iterate over the array
    # i and j start from 1 and not 0 to stay close to the wikipedia pseudo-code
    # see https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance
    for i in range(1, len1 + 1):
        last_right_buf = 0
        for j in range(1, len2 + 1):
            last_left = last_left_t[s2[j - 1]]
            last_right = last_right_buf
            if s1[i - 1] == s2[j - 1]:
                last_right_buf = j
            _edit_dist_step(
                lev,
                i,
                j,
                s1,
                s2,
                last_left,
                last_right,
                substitution_cost=substitution_cost,
                transpositions=transpositions,
            )
        last_left_t[s1[i - 1]] = i
    return lev[len1][len2]


def _edit_dist_backtrace(lev):
    i, j = len(lev) - 1, len(lev[0]) - 1
    alignment = [(i, j)]

    while (i, j) != (0, 0):
        directions = [
            (i - 1, j - 1),  # substitution
            (i - 1, j),  # skip s1
            (i, j - 1),  # skip s2
        ]

        direction_costs = (
            (lev[i][j] if (i >= 0 and j >= 0) else float("inf"), (i, j))
            for i, j in directions
        )
        _, (i, j) = min(direction_costs, key=operator.itemgetter(0))

        alignment.append((i, j))
    return list(reversed(alignment))


def edit_distance_align(s1, s2, substitution_cost=1):
    """

    Calculate the minimum Levenshtein edit-distance based alignment

    mapping between two strings. The alignment finds the mapping

    from string s1 to s2 that minimizes the edit distance cost.

    For example, mapping "rain" to "shine" would involve 2

    substitutions, 2 matches and an insertion resulting in

    the following mapping:

    [(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (4, 5)]

    NB: (0, 0) is the start state without any letters associated

    See more: https://web.stanford.edu/class/cs124/lec/med.pdf



    In case of multiple valid minimum-distance alignments, the

    backtrace has the following operation precedence:



    1. Substitute s1 and s2 characters

    2. Skip s1 character

    3. Skip s2 character



    The backtrace is carried out in reverse string order.



    This function does not support transposition.



    :param s1, s2: The strings to be aligned

    :type s1: str

    :type s2: str

    :type substitution_cost: int

    :rtype: List[Tuple(int, int)]

    """
    # set up a 2-D array
    len1 = len(s1)
    len2 = len(s2)
    lev = _edit_dist_init(len1 + 1, len2 + 1)

    # iterate over the array
    for i in range(len1):
        for j in range(len2):
            _edit_dist_step(
                lev,
                i + 1,
                j + 1,
                s1,
                s2,
                0,
                0,
                substitution_cost=substitution_cost,
                transpositions=False,
            )

    # backtrace to find alignment
    alignment = _edit_dist_backtrace(lev)
    return alignment


def binary_distance(label1, label2):
    """Simple equality test.



    0.0 if the labels are identical, 1.0 if they are different.



    >>> from nltk.metrics import binary_distance

    >>> binary_distance(1,1)

    0.0



    >>> binary_distance(1,3)

    1.0

    """

    return 0.0 if label1 == label2 else 1.0


def jaccard_distance(label1, label2):
    """Distance metric comparing set-similarity."""
    return (len(label1.union(label2)) - len(label1.intersection(label2))) / len(
        label1.union(label2)
    )


def masi_distance(label1, label2):
    """Distance metric that takes into account partial agreement when multiple

    labels are assigned.



    >>> from nltk.metrics import masi_distance

    >>> masi_distance(set([1, 2]), set([1, 2, 3, 4]))

    0.665



    Passonneau 2006, Measuring Agreement on Set-Valued Items (MASI)

    for Semantic and Pragmatic Annotation.

    """

    len_intersection = len(label1.intersection(label2))
    len_union = len(label1.union(label2))
    len_label1 = len(label1)
    len_label2 = len(label2)
    if len_label1 == len_label2 and len_label1 == len_intersection:
        m = 1
    elif len_intersection == min(len_label1, len_label2):
        m = 0.67
    elif len_intersection > 0:
        m = 0.33
    else:
        m = 0

    return 1 - len_intersection / len_union * m


def interval_distance(label1, label2):
    """Krippendorff's interval distance metric



    >>> from nltk.metrics import interval_distance

    >>> interval_distance(1,10)

    81



    Krippendorff 1980, Content Analysis: An Introduction to its Methodology

    """

    try:
        return pow(label1 - label2, 2)
    #        return pow(list(label1)[0]-list(label2)[0],2)
    except:
        print("non-numeric labels not supported with interval distance")


def presence(label):
    """Higher-order function to test presence of a given label"""

    return lambda x, y: 1.0 * ((label in x) == (label in y))


def fractional_presence(label):
    return (
        lambda x, y: abs((1.0 / len(x)) - (1.0 / len(y))) * (label in x and label in y)
        or 0.0 * (label not in x and label not in y)
        or abs(1.0 / len(x)) * (label in x and label not in y)
        or (1.0 / len(y)) * (label not in x and label in y)
    )


def custom_distance(file):
    data = {}
    with open(file) as infile:
        for l in infile:
            labelA, labelB, dist = l.strip().split("\t")
            labelA = frozenset([labelA])
            labelB = frozenset([labelB])
            data[frozenset([labelA, labelB])] = float(dist)
    return lambda x, y: data[frozenset([x, y])]


def jaro_similarity(s1, s2):
    """

    Computes the Jaro similarity between 2 sequences from:



        Matthew A. Jaro (1989). Advances in record linkage methodology

        as applied to the 1985 census of Tampa Florida. Journal of the

        American Statistical Association. 84 (406): 414-20.



    The Jaro distance between is the min no. of single-character transpositions

    required to change one word into another. The Jaro similarity formula from

    https://en.wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance :



        ``jaro_sim = 0 if m = 0 else 1/3 * (m/|s_1| + m/s_2 + (m-t)/m)``



    where

        - `|s_i|` is the length of string `s_i`

        - `m` is the no. of matching characters

        - `t` is the half no. of possible transpositions.

    """
    # First, store the length of the strings
    # because they will be re-used several times.
    len_s1, len_s2 = len(s1), len(s2)

    # The upper bound of the distance for being a matched character.
    match_bound = max(len_s1, len_s2) // 2 - 1

    # Initialize the counts for matches and transpositions.
    matches = 0  # no.of matched characters in s1 and s2
    transpositions = 0  # no. of transpositions between s1 and s2
    flagged_1 = []  # positions in s1 which are matches to some character in s2
    flagged_2 = []  # positions in s2 which are matches to some character in s1

    # Iterate through sequences, check for matches and compute transpositions.
    for i in range(len_s1):  # Iterate through each character.
        upperbound = min(i + match_bound, len_s2 - 1)
        lowerbound = max(0, i - match_bound)
        for j in range(lowerbound, upperbound + 1):
            if s1[i] == s2[j] and j not in flagged_2:
                matches += 1
                flagged_1.append(i)
                flagged_2.append(j)
                break
    flagged_2.sort()
    for i, j in zip(flagged_1, flagged_2):
        if s1[i] != s2[j]:
            transpositions += 1

    if matches == 0:
        return 0
    else:
        return (
            1
            / 3
            * (
                matches / len_s1
                + matches / len_s2
                + (matches - transpositions // 2) / matches
            )
        )


def jaro_winkler_similarity(s1, s2, p=0.1, max_l=4):
    """

    The Jaro Winkler distance is an extension of the Jaro similarity in:



        William E. Winkler. 1990. String Comparator Metrics and Enhanced

        Decision Rules in the Fellegi-Sunter Model of Record Linkage.

        Proceedings of the Section on Survey Research Methods.

        American Statistical Association: 354-359.



    such that:



        jaro_winkler_sim = jaro_sim + ( l * p * (1 - jaro_sim) )



    where,



    - jaro_sim is the output from the Jaro Similarity,

        see jaro_similarity()

    - l is the length of common prefix at the start of the string

        - this implementation provides an upperbound for the l value

            to keep the prefixes.A common value of this upperbound is 4.

    - p is the constant scaling factor to overweigh common prefixes.

        The Jaro-Winkler similarity will fall within the [0, 1] bound,

        given that max(p)<=0.25 , default is p=0.1 in Winkler (1990)





    Test using outputs from https://www.census.gov/srd/papers/pdf/rr93-8.pdf

    from "Table 5 Comparison of String Comparators Rescaled between 0 and 1"



    >>> winkler_examples = [("billy", "billy"), ("billy", "bill"), ("billy", "blily"),

    ... ("massie", "massey"), ("yvette", "yevett"), ("billy", "bolly"), ("dwayne", "duane"),

    ... ("dixon", "dickson"), ("billy", "susan")]



    >>> winkler_scores = [1.000, 0.967, 0.947, 0.944, 0.911, 0.893, 0.858, 0.853, 0.000]

    >>> jaro_scores =    [1.000, 0.933, 0.933, 0.889, 0.889, 0.867, 0.822, 0.790, 0.000]



    One way to match the values on the Winkler's paper is to provide a different

    p scaling factor for different pairs of strings, e.g.



    >>> p_factors = [0.1, 0.125, 0.20, 0.125, 0.20, 0.20, 0.20, 0.15, 0.1]



    >>> for (s1, s2), jscore, wscore, p in zip(winkler_examples, jaro_scores, winkler_scores, p_factors):

    ...     assert round(jaro_similarity(s1, s2), 3) == jscore

    ...     assert round(jaro_winkler_similarity(s1, s2, p=p), 3) == wscore





    Test using outputs from https://www.census.gov/srd/papers/pdf/rr94-5.pdf from

    "Table 2.1. Comparison of String Comparators Using Last Names, First Names, and Street Names"



    >>> winkler_examples = [('SHACKLEFORD', 'SHACKELFORD'), ('DUNNINGHAM', 'CUNNIGHAM'),

    ... ('NICHLESON', 'NICHULSON'), ('JONES', 'JOHNSON'), ('MASSEY', 'MASSIE'),

    ... ('ABROMS', 'ABRAMS'), ('HARDIN', 'MARTINEZ'), ('ITMAN', 'SMITH'),

    ... ('JERALDINE', 'GERALDINE'), ('MARHTA', 'MARTHA'), ('MICHELLE', 'MICHAEL'),

    ... ('JULIES', 'JULIUS'), ('TANYA', 'TONYA'), ('DWAYNE', 'DUANE'), ('SEAN', 'SUSAN'),

    ... ('JON', 'JOHN'), ('JON', 'JAN'), ('BROOKHAVEN', 'BRROKHAVEN'),

    ... ('BROOK HALLOW', 'BROOK HLLW'), ('DECATUR', 'DECATIR'), ('FITZRUREITER', 'FITZENREITER'),

    ... ('HIGBEE', 'HIGHEE'), ('HIGBEE', 'HIGVEE'), ('LACURA', 'LOCURA'), ('IOWA', 'IONA'), ('1ST', 'IST')]



    >>> jaro_scores =   [0.970, 0.896, 0.926, 0.790, 0.889, 0.889, 0.722, 0.467, 0.926,

    ... 0.944, 0.869, 0.889, 0.867, 0.822, 0.783, 0.917, 0.000, 0.933, 0.944, 0.905,

    ... 0.856, 0.889, 0.889, 0.889, 0.833, 0.000]



    >>> winkler_scores = [0.982, 0.896, 0.956, 0.832, 0.944, 0.922, 0.722, 0.467, 0.926,

    ... 0.961, 0.921, 0.933, 0.880, 0.858, 0.805, 0.933, 0.000, 0.947, 0.967, 0.943,

    ... 0.913, 0.922, 0.922, 0.900, 0.867, 0.000]



    One way to match the values on the Winkler's paper is to provide a different

    p scaling factor for different pairs of strings, e.g.



    >>> p_factors = [0.1, 0.1, 0.1, 0.1, 0.125, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.20,

    ... 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]





    >>> for (s1, s2), jscore, wscore, p in zip(winkler_examples, jaro_scores, winkler_scores, p_factors):

    ...     if (s1, s2) in [('JON', 'JAN'), ('1ST', 'IST')]:

    ...         continue  # Skip bad examples from the paper.

    ...     assert round(jaro_similarity(s1, s2), 3) == jscore

    ...     assert round(jaro_winkler_similarity(s1, s2, p=p), 3) == wscore







    This test-case proves that the output of Jaro-Winkler similarity depends on

    the product  l * p and not on the product max_l * p. Here the product max_l * p > 1

    however the product l * p <= 1



    >>> round(jaro_winkler_similarity('TANYA', 'TONYA', p=0.1, max_l=100), 3)

    0.88

    """
    # To ensure that the output of the Jaro-Winkler's similarity
    # falls between [0,1], the product of l * p needs to be
    # also fall between [0,1].
    if not 0 <= max_l * p <= 1:
        warnings.warn(
            str(
                "The product  `max_l * p` might not fall between [0,1]."
                "Jaro-Winkler similarity might not be between 0 and 1."
            )
        )

    # Compute the Jaro similarity
    jaro_sim = jaro_similarity(s1, s2)

    # Initialize the upper bound for the no. of prefixes.
    # if user did not pre-define the upperbound,
    # use shorter length between s1 and s2

    # Compute the prefix matches.
    l = 0
    # zip() will automatically loop until the end of shorter string.
    for s1_i, s2_i in zip(s1, s2):
        if s1_i == s2_i:
            l += 1
        else:
            break
        if l == max_l:
            break
    # Return the similarity value as described in docstring.
    return jaro_sim + (l * p * (1 - jaro_sim))


def demo():
    string_distance_examples = [
        ("rain", "shine"),
        ("abcdef", "acbdef"),
        ("language", "lnaguaeg"),
        ("language", "lnaugage"),
        ("language", "lngauage"),
    ]
    for s1, s2 in string_distance_examples:
        print(f"Edit distance btwn '{s1}' and '{s2}':", edit_distance(s1, s2))
        print(
            f"Edit dist with transpositions btwn '{s1}' and '{s2}':",
            edit_distance(s1, s2, transpositions=True),
        )
        print(f"Jaro similarity btwn '{s1}' and '{s2}':", jaro_similarity(s1, s2))
        print(
            f"Jaro-Winkler similarity btwn '{s1}' and '{s2}':",
            jaro_winkler_similarity(s1, s2),
        )
        print(
            f"Jaro-Winkler distance btwn '{s1}' and '{s2}':",
            1 - jaro_winkler_similarity(s1, s2),
        )
    s1 = {1, 2, 3, 4}
    s2 = {3, 4, 5}
    print("s1:", s1)
    print("s2:", s2)
    print("Binary distance:", binary_distance(s1, s2))
    print("Jaccard distance:", jaccard_distance(s1, s2))
    print("MASI distance:", masi_distance(s1, s2))


if __name__ == "__main__":
    demo()