File size: 26,761 Bytes
d916065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
# Natural Language Toolkit: First-order Resolution-based Theorem Prover
#
# Author: Dan Garrette <[email protected]>
#
# Copyright (C) 2001-2023 NLTK Project
# URL: <https://www.nltk.org/>
# For license information, see LICENSE.TXT

"""

Module for a resolution-based First Order theorem prover.

"""

import operator
from collections import defaultdict
from functools import reduce

from nltk.inference.api import BaseProverCommand, Prover
from nltk.sem import skolemize
from nltk.sem.logic import (
    AndExpression,
    ApplicationExpression,
    EqualityExpression,
    Expression,
    IndividualVariableExpression,
    NegatedExpression,
    OrExpression,
    Variable,
    VariableExpression,
    is_indvar,
    unique_variable,
)


class ProverParseError(Exception):
    pass


class ResolutionProver(Prover):
    ANSWER_KEY = "ANSWER"
    _assume_false = True

    def _prove(self, goal=None, assumptions=None, verbose=False):
        """

        :param goal: Input expression to prove

        :type goal: sem.Expression

        :param assumptions: Input expressions to use as assumptions in the proof

        :type assumptions: list(sem.Expression)

        """
        if not assumptions:
            assumptions = []

        result = None
        try:
            clauses = []
            if goal:
                clauses.extend(clausify(-goal))
            for a in assumptions:
                clauses.extend(clausify(a))
            result, clauses = self._attempt_proof(clauses)
            if verbose:
                print(ResolutionProverCommand._decorate_clauses(clauses))
        except RuntimeError as e:
            if self._assume_false and str(e).startswith(
                "maximum recursion depth exceeded"
            ):
                result = False
                clauses = []
            else:
                if verbose:
                    print(e)
                else:
                    raise e
        return (result, clauses)

    def _attempt_proof(self, clauses):
        # map indices to lists of indices, to store attempted unifications
        tried = defaultdict(list)

        i = 0
        while i < len(clauses):
            if not clauses[i].is_tautology():
                # since we try clauses in order, we should start after the last
                # index tried
                if tried[i]:
                    j = tried[i][-1] + 1
                else:
                    j = i + 1  # nothing tried yet for 'i', so start with the next

                while j < len(clauses):
                    # don't: 1) unify a clause with itself,
                    #       2) use tautologies
                    if i != j and j and not clauses[j].is_tautology():
                        tried[i].append(j)
                        newclauses = clauses[i].unify(clauses[j])
                        if newclauses:
                            for newclause in newclauses:
                                newclause._parents = (i + 1, j + 1)
                                clauses.append(newclause)
                                if not len(newclause):  # if there's an empty clause
                                    return (True, clauses)
                            i = -1  # since we added a new clause, restart from the top
                            break
                    j += 1
            i += 1
        return (False, clauses)


class ResolutionProverCommand(BaseProverCommand):
    def __init__(self, goal=None, assumptions=None, prover=None):
        """

        :param goal: Input expression to prove

        :type goal: sem.Expression

        :param assumptions: Input expressions to use as assumptions in

            the proof.

        :type assumptions: list(sem.Expression)

        """
        if prover is not None:
            assert isinstance(prover, ResolutionProver)
        else:
            prover = ResolutionProver()

        BaseProverCommand.__init__(self, prover, goal, assumptions)
        self._clauses = None

    def prove(self, verbose=False):
        """

        Perform the actual proof.  Store the result to prevent unnecessary

        re-proving.

        """
        if self._result is None:
            self._result, clauses = self._prover._prove(
                self.goal(), self.assumptions(), verbose
            )
            self._clauses = clauses
            self._proof = ResolutionProverCommand._decorate_clauses(clauses)
        return self._result

    def find_answers(self, verbose=False):
        self.prove(verbose)

        answers = set()
        answer_ex = VariableExpression(Variable(ResolutionProver.ANSWER_KEY))
        for clause in self._clauses:
            for term in clause:
                if (
                    isinstance(term, ApplicationExpression)
                    and term.function == answer_ex
                    and not isinstance(term.argument, IndividualVariableExpression)
                ):
                    answers.add(term.argument)
        return answers

    @staticmethod
    def _decorate_clauses(clauses):
        """

        Decorate the proof output.

        """
        out = ""
        max_clause_len = max(len(str(clause)) for clause in clauses)
        max_seq_len = len(str(len(clauses)))
        for i in range(len(clauses)):
            parents = "A"
            taut = ""
            if clauses[i].is_tautology():
                taut = "Tautology"
            if clauses[i]._parents:
                parents = str(clauses[i]._parents)
            parents = " " * (max_clause_len - len(str(clauses[i])) + 1) + parents
            seq = " " * (max_seq_len - len(str(i + 1))) + str(i + 1)
            out += f"[{seq}] {clauses[i]} {parents} {taut}\n"
        return out


class Clause(list):
    def __init__(self, data):
        list.__init__(self, data)
        self._is_tautology = None
        self._parents = None

    def unify(self, other, bindings=None, used=None, skipped=None, debug=False):
        """

        Attempt to unify this Clause with the other, returning a list of

        resulting, unified, Clauses.



        :param other: ``Clause`` with which to unify

        :param bindings: ``BindingDict`` containing bindings that should be used

            during the unification

        :param used: tuple of two lists of atoms.  The first lists the

            atoms from 'self' that were successfully unified with atoms from

            'other'.  The second lists the atoms from 'other' that were successfully

            unified with atoms from 'self'.

        :param skipped: tuple of two ``Clause`` objects.  The first is a list of all

            the atoms from the 'self' Clause that have not been unified with

            anything on the path.  The second is same thing for the 'other' Clause.

        :param debug: bool indicating whether debug statements should print

        :return: list containing all the resulting ``Clause`` objects that could be

            obtained by unification

        """
        if bindings is None:
            bindings = BindingDict()
        if used is None:
            used = ([], [])
        if skipped is None:
            skipped = ([], [])
        if isinstance(debug, bool):
            debug = DebugObject(debug)

        newclauses = _iterate_first(
            self, other, bindings, used, skipped, _complete_unify_path, debug
        )

        # remove subsumed clauses.  make a list of all indices of subsumed
        # clauses, and then remove them from the list
        subsumed = []
        for i, c1 in enumerate(newclauses):
            if i not in subsumed:
                for j, c2 in enumerate(newclauses):
                    if i != j and j not in subsumed and c1.subsumes(c2):
                        subsumed.append(j)
        result = []
        for i in range(len(newclauses)):
            if i not in subsumed:
                result.append(newclauses[i])

        return result

    def isSubsetOf(self, other):
        """

        Return True iff every term in 'self' is a term in 'other'.



        :param other: ``Clause``

        :return: bool

        """
        for a in self:
            if a not in other:
                return False
        return True

    def subsumes(self, other):
        """

        Return True iff 'self' subsumes 'other', this is, if there is a

        substitution such that every term in 'self' can be unified with a term

        in 'other'.



        :param other: ``Clause``

        :return: bool

        """
        negatedother = []
        for atom in other:
            if isinstance(atom, NegatedExpression):
                negatedother.append(atom.term)
            else:
                negatedother.append(-atom)

        negatedotherClause = Clause(negatedother)

        bindings = BindingDict()
        used = ([], [])
        skipped = ([], [])
        debug = DebugObject(False)

        return (
            len(
                _iterate_first(
                    self,
                    negatedotherClause,
                    bindings,
                    used,
                    skipped,
                    _subsumes_finalize,
                    debug,
                )
            )
            > 0
        )

    def __getslice__(self, start, end):
        return Clause(list.__getslice__(self, start, end))

    def __sub__(self, other):
        return Clause([a for a in self if a not in other])

    def __add__(self, other):
        return Clause(list.__add__(self, other))

    def is_tautology(self):
        """

        Self is a tautology if it contains ground terms P and -P.  The ground

        term, P, must be an exact match, ie, not using unification.

        """
        if self._is_tautology is not None:
            return self._is_tautology
        for i, a in enumerate(self):
            if not isinstance(a, EqualityExpression):
                j = len(self) - 1
                while j > i:
                    b = self[j]
                    if isinstance(a, NegatedExpression):
                        if a.term == b:
                            self._is_tautology = True
                            return True
                    elif isinstance(b, NegatedExpression):
                        if a == b.term:
                            self._is_tautology = True
                            return True
                    j -= 1
        self._is_tautology = False
        return False

    def free(self):
        return reduce(operator.or_, ((atom.free() | atom.constants()) for atom in self))

    def replace(self, variable, expression):
        """

        Replace every instance of variable with expression across every atom

        in the clause



        :param variable: ``Variable``

        :param expression: ``Expression``

        """
        return Clause([atom.replace(variable, expression) for atom in self])

    def substitute_bindings(self, bindings):
        """

        Replace every binding



        :param bindings: A list of tuples mapping Variable Expressions to the

            Expressions to which they are bound.

        :return: ``Clause``

        """
        return Clause([atom.substitute_bindings(bindings) for atom in self])

    def __str__(self):
        return "{" + ", ".join("%s" % item for item in self) + "}"

    def __repr__(self):
        return "%s" % self


def _iterate_first(first, second, bindings, used, skipped, finalize_method, debug):
    """

    This method facilitates movement through the terms of 'self'

    """
    debug.line(f"unify({first},{second}) {bindings}")

    if not len(first) or not len(second):  # if no more recursions can be performed
        return finalize_method(first, second, bindings, used, skipped, debug)
    else:
        # explore this 'self' atom
        result = _iterate_second(
            first, second, bindings, used, skipped, finalize_method, debug + 1
        )

        # skip this possible 'self' atom
        newskipped = (skipped[0] + [first[0]], skipped[1])
        result += _iterate_first(
            first[1:], second, bindings, used, newskipped, finalize_method, debug + 1
        )

        try:
            newbindings, newused, unused = _unify_terms(
                first[0], second[0], bindings, used
            )
            # Unification found, so progress with this line of unification
            # put skipped and unused terms back into play for later unification.
            newfirst = first[1:] + skipped[0] + unused[0]
            newsecond = second[1:] + skipped[1] + unused[1]
            result += _iterate_first(
                newfirst,
                newsecond,
                newbindings,
                newused,
                ([], []),
                finalize_method,
                debug + 1,
            )
        except BindingException:
            # the atoms could not be unified,
            pass

        return result


def _iterate_second(first, second, bindings, used, skipped, finalize_method, debug):
    """

    This method facilitates movement through the terms of 'other'

    """
    debug.line(f"unify({first},{second}) {bindings}")

    if not len(first) or not len(second):  # if no more recursions can be performed
        return finalize_method(first, second, bindings, used, skipped, debug)
    else:
        # skip this possible pairing and move to the next
        newskipped = (skipped[0], skipped[1] + [second[0]])
        result = _iterate_second(
            first, second[1:], bindings, used, newskipped, finalize_method, debug + 1
        )

        try:
            newbindings, newused, unused = _unify_terms(
                first[0], second[0], bindings, used
            )
            # Unification found, so progress with this line of unification
            # put skipped and unused terms back into play for later unification.
            newfirst = first[1:] + skipped[0] + unused[0]
            newsecond = second[1:] + skipped[1] + unused[1]
            result += _iterate_second(
                newfirst,
                newsecond,
                newbindings,
                newused,
                ([], []),
                finalize_method,
                debug + 1,
            )
        except BindingException:
            # the atoms could not be unified,
            pass

        return result


def _unify_terms(a, b, bindings=None, used=None):
    """

    This method attempts to unify two terms.  Two expressions are unifiable

    if there exists a substitution function S such that S(a) == S(-b).



    :param a: ``Expression``

    :param b: ``Expression``

    :param bindings: ``BindingDict`` a starting set of bindings with which

    the unification must be consistent

    :return: ``BindingDict`` A dictionary of the bindings required to unify

    :raise ``BindingException``: If the terms cannot be unified

    """
    assert isinstance(a, Expression)
    assert isinstance(b, Expression)

    if bindings is None:
        bindings = BindingDict()
    if used is None:
        used = ([], [])

    # Use resolution
    if isinstance(a, NegatedExpression) and isinstance(b, ApplicationExpression):
        newbindings = most_general_unification(a.term, b, bindings)
        newused = (used[0] + [a], used[1] + [b])
        unused = ([], [])
    elif isinstance(a, ApplicationExpression) and isinstance(b, NegatedExpression):
        newbindings = most_general_unification(a, b.term, bindings)
        newused = (used[0] + [a], used[1] + [b])
        unused = ([], [])

    # Use demodulation
    elif isinstance(a, EqualityExpression):
        newbindings = BindingDict([(a.first.variable, a.second)])
        newused = (used[0] + [a], used[1])
        unused = ([], [b])
    elif isinstance(b, EqualityExpression):
        newbindings = BindingDict([(b.first.variable, b.second)])
        newused = (used[0], used[1] + [b])
        unused = ([a], [])

    else:
        raise BindingException((a, b))

    return newbindings, newused, unused


def _complete_unify_path(first, second, bindings, used, skipped, debug):
    if used[0] or used[1]:  # if bindings were made along the path
        newclause = Clause(skipped[0] + skipped[1] + first + second)
        debug.line("  -> New Clause: %s" % newclause)
        return [newclause.substitute_bindings(bindings)]
    else:  # no bindings made means no unification occurred.  so no result
        debug.line("  -> End")
        return []


def _subsumes_finalize(first, second, bindings, used, skipped, debug):
    if not len(skipped[0]) and not len(first):
        # If there are no skipped terms and no terms left in 'first', then
        # all of the terms in the original 'self' were unified with terms
        # in 'other'.  Therefore, there exists a binding (this one) such that
        # every term in self can be unified with a term in other, which
        # is the definition of subsumption.
        return [True]
    else:
        return []


def clausify(expression):
    """

    Skolemize, clausify, and standardize the variables apart.

    """
    clause_list = []
    for clause in _clausify(skolemize(expression)):
        for free in clause.free():
            if is_indvar(free.name):
                newvar = VariableExpression(unique_variable())
                clause = clause.replace(free, newvar)
        clause_list.append(clause)
    return clause_list


def _clausify(expression):
    """

    :param expression: a skolemized expression in CNF

    """
    if isinstance(expression, AndExpression):
        return _clausify(expression.first) + _clausify(expression.second)
    elif isinstance(expression, OrExpression):
        first = _clausify(expression.first)
        second = _clausify(expression.second)
        assert len(first) == 1
        assert len(second) == 1
        return [first[0] + second[0]]
    elif isinstance(expression, EqualityExpression):
        return [Clause([expression])]
    elif isinstance(expression, ApplicationExpression):
        return [Clause([expression])]
    elif isinstance(expression, NegatedExpression):
        if isinstance(expression.term, ApplicationExpression):
            return [Clause([expression])]
        elif isinstance(expression.term, EqualityExpression):
            return [Clause([expression])]
    raise ProverParseError()


class BindingDict:
    def __init__(self, binding_list=None):
        """

        :param binding_list: list of (``AbstractVariableExpression``, ``AtomicExpression``) to initialize the dictionary

        """
        self.d = {}

        if binding_list:
            for (v, b) in binding_list:
                self[v] = b

    def __setitem__(self, variable, binding):
        """

        A binding is consistent with the dict if its variable is not already bound, OR if its

        variable is already bound to its argument.



        :param variable: ``Variable`` The variable to bind

        :param binding: ``Expression`` The atomic to which 'variable' should be bound

        :raise BindingException: If the variable cannot be bound in this dictionary

        """
        assert isinstance(variable, Variable)
        assert isinstance(binding, Expression)

        try:
            existing = self[variable]
        except KeyError:
            existing = None

        if not existing or binding == existing:
            self.d[variable] = binding
        elif isinstance(binding, IndividualVariableExpression):
            # Since variable is already bound, try to bind binding to variable
            try:
                existing = self[binding.variable]
            except KeyError:
                existing = None

            binding2 = VariableExpression(variable)

            if not existing or binding2 == existing:
                self.d[binding.variable] = binding2
            else:
                raise BindingException(
                    "Variable %s already bound to another " "value" % (variable)
                )
        else:
            raise BindingException(
                "Variable %s already bound to another " "value" % (variable)
            )

    def __getitem__(self, variable):
        """

        Return the expression to which 'variable' is bound

        """
        assert isinstance(variable, Variable)

        intermediate = self.d[variable]
        while intermediate:
            try:
                intermediate = self.d[intermediate]
            except KeyError:
                return intermediate

    def __contains__(self, item):
        return item in self.d

    def __add__(self, other):
        """

        :param other: ``BindingDict`` The dict with which to combine self

        :return: ``BindingDict`` A new dict containing all the elements of both parameters

        :raise BindingException: If the parameter dictionaries are not consistent with each other

        """
        try:
            combined = BindingDict()
            for v in self.d:
                combined[v] = self.d[v]
            for v in other.d:
                combined[v] = other.d[v]
            return combined
        except BindingException as e:
            raise BindingException(
                "Attempting to add two contradicting "
                "BindingDicts: '%s' and '%s'" % (self, other)
            ) from e

    def __len__(self):
        return len(self.d)

    def __str__(self):
        data_str = ", ".join(f"{v}: {self.d[v]}" for v in sorted(self.d.keys()))
        return "{" + data_str + "}"

    def __repr__(self):
        return "%s" % self


def most_general_unification(a, b, bindings=None):
    """

    Find the most general unification of the two given expressions



    :param a: ``Expression``

    :param b: ``Expression``

    :param bindings: ``BindingDict`` a starting set of bindings with which the

                     unification must be consistent

    :return: a list of bindings

    :raise BindingException: if the Expressions cannot be unified

    """
    if bindings is None:
        bindings = BindingDict()

    if a == b:
        return bindings
    elif isinstance(a, IndividualVariableExpression):
        return _mgu_var(a, b, bindings)
    elif isinstance(b, IndividualVariableExpression):
        return _mgu_var(b, a, bindings)
    elif isinstance(a, ApplicationExpression) and isinstance(b, ApplicationExpression):
        return most_general_unification(
            a.function, b.function, bindings
        ) + most_general_unification(a.argument, b.argument, bindings)
    raise BindingException((a, b))


def _mgu_var(var, expression, bindings):
    if var.variable in expression.free() | expression.constants():
        raise BindingException((var, expression))
    else:
        return BindingDict([(var.variable, expression)]) + bindings


class BindingException(Exception):
    def __init__(self, arg):
        if isinstance(arg, tuple):
            Exception.__init__(self, "'%s' cannot be bound to '%s'" % arg)
        else:
            Exception.__init__(self, arg)


class UnificationException(Exception):
    def __init__(self, a, b):
        Exception.__init__(self, f"'{a}' cannot unify with '{b}'")


class DebugObject:
    def __init__(self, enabled=True, indent=0):
        self.enabled = enabled
        self.indent = indent

    def __add__(self, i):
        return DebugObject(self.enabled, self.indent + i)

    def line(self, line):
        if self.enabled:
            print("    " * self.indent + line)


def testResolutionProver():
    resolution_test(r"man(x)")
    resolution_test(r"(man(x) -> man(x))")
    resolution_test(r"(man(x) -> --man(x))")
    resolution_test(r"-(man(x) and -man(x))")
    resolution_test(r"(man(x) or -man(x))")
    resolution_test(r"(man(x) -> man(x))")
    resolution_test(r"-(man(x) and -man(x))")
    resolution_test(r"(man(x) or -man(x))")
    resolution_test(r"(man(x) -> man(x))")
    resolution_test(r"(man(x) iff man(x))")
    resolution_test(r"-(man(x) iff -man(x))")
    resolution_test("all x.man(x)")
    resolution_test("-all x.some y.F(x,y) & some x.all y.(-F(x,y))")
    resolution_test("some x.all y.sees(x,y)")

    p1 = Expression.fromstring(r"all x.(man(x) -> mortal(x))")
    p2 = Expression.fromstring(r"man(Socrates)")
    c = Expression.fromstring(r"mortal(Socrates)")
    print(f"{p1}, {p2} |- {c}: {ResolutionProver().prove(c, [p1, p2])}")

    p1 = Expression.fromstring(r"all x.(man(x) -> walks(x))")
    p2 = Expression.fromstring(r"man(John)")
    c = Expression.fromstring(r"some y.walks(y)")
    print(f"{p1}, {p2} |- {c}: {ResolutionProver().prove(c, [p1, p2])}")

    p = Expression.fromstring(r"some e1.some e2.(believe(e1,john,e2) & walk(e2,mary))")
    c = Expression.fromstring(r"some e0.walk(e0,mary)")
    print(f"{p} |- {c}: {ResolutionProver().prove(c, [p])}")


def resolution_test(e):
    f = Expression.fromstring(e)
    t = ResolutionProver().prove(f)
    print(f"|- {f}: {t}")


def test_clausify():
    lexpr = Expression.fromstring

    print(clausify(lexpr("P(x) | Q(x)")))
    print(clausify(lexpr("(P(x) & Q(x)) | R(x)")))
    print(clausify(lexpr("P(x) | (Q(x) & R(x))")))
    print(clausify(lexpr("(P(x) & Q(x)) | (R(x) & S(x))")))

    print(clausify(lexpr("P(x) | Q(x) | R(x)")))
    print(clausify(lexpr("P(x) | (Q(x) & R(x)) | S(x)")))

    print(clausify(lexpr("exists x.P(x) | Q(x)")))

    print(clausify(lexpr("-(-P(x) & Q(x))")))
    print(clausify(lexpr("P(x) <-> Q(x)")))
    print(clausify(lexpr("-(P(x) <-> Q(x))")))
    print(clausify(lexpr("-(all x.P(x))")))
    print(clausify(lexpr("-(some x.P(x))")))

    print(clausify(lexpr("some x.P(x)")))
    print(clausify(lexpr("some x.all y.P(x,y)")))
    print(clausify(lexpr("all y.some x.P(x,y)")))
    print(clausify(lexpr("all z.all y.some x.P(x,y,z)")))
    print(clausify(lexpr("all x.(all y.P(x,y) -> -all y.(Q(x,y) -> R(x,y)))")))


def demo():
    test_clausify()
    print()
    testResolutionProver()
    print()

    p = Expression.fromstring("man(x)")
    print(ResolutionProverCommand(p, [p]).prove())


if __name__ == "__main__":
    demo()