Spaces:
Sleeping
Sleeping
File size: 6,047 Bytes
24c4def |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import cv2
import argparse
import numpy as np
from PIL import Image
import sys
sys.path.append("/home/wcx/wcx/GroundingDINO/LVLM/mmocr")
# MMOCR
from mmocr.apis.inferencers import MMOCRInferencer
# BUILD MMOCR
def arg_parse():
parser = argparse.ArgumentParser(description='MMOCR demo for gradio app')
parser.add_argument(
'--rec_config',
type=str,
default='/home/wcx/wcx/GroundingDINO/LVLM/mmocr/configs/textrecog/maerec/maerec_b_union14m.py',
help='The recognition config file.')
parser.add_argument(
'--rec_weight',
type=str,
default=
'/newdisk3/wcx/ocr_model/maerec_b.pth',
help='The recognition weight file.')
parser.add_argument(
'--det_config',
type=str,
default='/home/wcx/wcx/GroundingDINO/LVLM/mmocr/configs/textdet/dbnetpp/dbnetpp_resnet50-oclip_fpnc_1200e_icdar2015.py', # noqa,
help='The detection config file.')
parser.add_argument(
'--det_weight',
type=str,
default='/newdisk3/wcx/ocr_model/dbnetpp.pth',
help='The detection weight file.')
parser.add_argument(
'--device',
type=str,
default='cuda:0',
help='The device used for inference.')
args = parser.parse_args()
return args
args = arg_parse()
mmocr_inferencer = MMOCRInferencer(
args.det_config,
args.det_weight,
args.rec_config,
args.rec_weight,
device=args.device)
def run_mmocr(image_path, use_detector=False):
"""Run MMOCR and SAM
Args:
img (np.ndarray): Input image
use_detector (bool, optional): Whether to use detector. Defaults to
True.
"""
data = Image.open(image_path).convert("RGB")
img = np.array(data)
if use_detector:
mode = 'det_rec'
else:
mode = 'rec'
# Build MMOCR
mmocr_inferencer.mode = mode
result = mmocr_inferencer(img, return_vis=True)
visualization = result['visualization'][0]
result = result['predictions'][0]
if mode == 'det_rec':
rec_texts = result['rec_texts']
det_polygons = result['det_polygons']
det_results = []
for rec_text, det_polygon in zip(rec_texts, det_polygons):
det_polygon = np.array(det_polygon).astype(np.int32).tolist()
det_results.append(f'{rec_text}: {det_polygon}')
out_results = '\n'.join(det_results)
# visualization = cv2.cvtColor(
# np.array(visualization), cv2.COLOR_RGB2BGR)
cv2.imwrite("/home/wcx/wcx/Union14M/results/{}".format(image_path.split("/")[-1]), np.array(visualization))
visualization = "Done"
else:
rec_text = result['rec_texts'][0]
rec_score = result['rec_scores'][0]
out_results = f'pred: {rec_text} \n score: {rec_score:.2f}'
visualization = None
return visualization, out_results
image_path = "/home/wcx/wcx/Union14M/image/temp.jpg"
vis, res = run_mmocr(image_path)
print(vis)
print(res)
# if __name__ == '__main__':
# args = arg_parse()
# mmocr_inferencer = MMOCRInferencer(
# args.det_config,
# args.det_weight,
# args.rec_config,
# args.rec_weight,
# device=args.device)
# with gr.Blocks() as demo:
# with gr.Row():
# with gr.Column(scale=1):
# gr.HTML("""
# <div style="text-align: center; max-width: 1200px; margin: 20px auto;">
# <h1 style="font-weight: 900; font-size: 3rem; margin: 0rem">
# MAERec: A MAE-pretrained Scene Text Recognizer
# </h1>
# <h3 style="font-weight: 450; font-size: 1rem; margin: 0rem">
# [<a href="https://arxiv.org/abs/2305.10855" style="color:blue;">arXiv</a>]
# [<a href="https://github.com/Mountchicken/Union14M" style="color:green;">Code</a>]
# </h3>
# <h2 style="text-align: left; font-weight: 600; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
# MAERec is a scene text recognition model composed of a ViT backbone and a Transformer decoder in auto-regressive
# style. It shows an outstanding performance in scene text recognition, especially when pre-trained on the
# Union14M-U through MAE.
# </h2>
# <h2 style="text-align: left; font-weight: 600; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
# In this demo, we combine MAERec with DBNet++ to build an
# end-to-end scene text recognition model.
# </h2>
# </div>
# """)
# gr.Image('github/maerec.png')
# with gr.Column(scale=1):
# input_image = gr.Image(label='Input Image')
# output_image = gr.Image(label='Output Image')
# use_detector = gr.Checkbox(
# label=
# 'Use Scene Text Detector or Not (Disabled for Recognition Only)',
# default=True)
# det_results = gr.Textbox(label='Detection Results')
# mmocr = gr.Button('Run MMOCR')
# gr.Markdown("## Image Examples")
# with gr.Row():
# gr.Examples(
# examples=[
# 'github/author.jpg', 'github/gradio1.jpeg',
# 'github/Art_Curve_178.jpg', 'github/cute_3.jpg',
# 'github/cute_168.jpg', 'github/hiercurve_2229.jpg',
# 'github/ic15_52.jpg', 'github/ic15_698.jpg',
# 'github/Art_Curve_352.jpg'
# ],
# inputs=input_image,
# )
# mmocr.click(
# fn=run_mmocr,
# inputs=[input_image, use_detector],
# outputs=[output_image, det_results])
# demo.launch(debug=True)
|