Spaces:
Sleeping
Sleeping
File size: 5,115 Bytes
24c4def |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
# This configuration prepares the ICDAR13 857 and 1015
# version, and uses ICDAR13 1015 version by default.
# You may uncomment the lines if you want to you the original version,
# which contains 1095 samples.
# You can check out the generated base config and use the 857
# version by using its corresponding config variables in your model.
data_root = 'data/icdar2013'
cache_path = 'data/cache'
train_preparer = dict(
obtainer=dict(
type='NaiveDataObtainer',
cache_path=cache_path,
files=[
dict(
url='https://rrc.cvc.uab.es/downloads/'
'Challenge2_Training_Task3_Images_GT.zip',
save_name='ic13_textrecog_train_img_gt.zip',
md5='6f0dbc823645968030878df7543f40a4',
content=['image'],
mapping=[
# ['ic13_textrecog_train_img_gt/gt.txt',
# 'annotations/train.txt'],
['ic13_textrecog_train_img_gt', 'textrecog_imgs/train']
]),
dict(
url='https://download.openmmlab.com/mmocr/data/1.x/recog/'
'icdar_2013/train_labels.json',
save_name='ic13_train_labels.json',
md5='008fcd0056e72c4cf3064fb4d1fce81b',
content=['annotation'],
mapping=[['ic13_train_labels.json', 'textrecog_train.json']]),
]))
# Note that we offer two versions of test set annotations as follows.Please
# choose one of them to download and comment the other. By default, we use the
# second one.
# 1. The original official annotation, which contains 1095 test
# samples.
# Uncomment the test_preparer if you want to use the original 1095 version.
# test_preparer = dict(
# obtainer=dict(
# type='NaiveDataObtainer',
# cache_path=cache_path,
# files=[
# dict(
# url='https://rrc.cvc.uab.es/downloads/'
# 'Challenge2_Test_Task3_Images.zip',
# save_name='ic13_textrecog_test_img.zip',
# md5='3206778eebb3a5c5cc15c249010bf77f',
# split=['test'],
# content=['image'],
# mapping=[['ic13_textrecog_test_img',
# 'textrecog_imgs/test']]),
# dict(
# url='https://rrc.cvc.uab.es/downloads/'
# 'Challenge2_Test_Task3_GT.txt',
# save_name='ic13_textrecog_test_gt.txt',
# md5='2634060ed8fe6e7a4a9b8d68785835a1',
# split=['test'],
# content=['annotation'],
# mapping=[[
# 'ic13_textrecog_test_gt.txt', 'annotations/test.txt'
# ]]), # noqa
# # The 857 version further pruned words shorter than 3 characters.
# dict(
# url='https://download.openmmlab.com/mmocr/data/1.x/recog/'
# 'icdar_2013/textrecog_test_857.json',
# save_name='textrecog_test_857.json',
# md5='3bed3985b0c51a989ad4006f6de8352b',
# split=['test'],
# content=['annotation'],
# ),
# ]),
# gatherer=dict(type='MonoGatherer', ann_name='test.txt'),
# parser=dict(
# type='ICDARTxtTextRecogAnnParser', separator=', ',
# format='img, text'), # noqa
# packer=dict(type='TextRecogPacker'),
# dumper=dict(type='JsonDumper'),
# )
# 2. The widely-used version for academic purpose, which filters
# out words with non-alphanumeric characters. This version contains
# 1015 test samples.
test_preparer = dict(
obtainer=dict(
type='NaiveDataObtainer',
cache_path=cache_path,
files=[
dict(
url='https://rrc.cvc.uab.es/downloads/'
'Challenge2_Test_Task3_Images.zip',
save_name='ic13_textrecog_test_img.zip',
md5='3206778eebb3a5c5cc15c249010bf77f',
split=['test'],
content=['image'],
mapping=[['ic13_textrecog_test_img', 'textrecog_imgs/test']]),
dict(
url='https://download.openmmlab.com/mmocr/data/1.x/recog/'
'icdar_2013/textrecog_test_1015.json',
save_name='textrecog_test.json',
md5='68fdd818f63df8b93dc952478952009a',
split=['test'],
content=['annotation'],
),
# The 857 version further pruned words shorter than 3 characters.
dict(
url='https://download.openmmlab.com/mmocr/data/1.x/recog/'
'icdar_2013/textrecog_test_857.json',
save_name='textrecog_test_857.json',
md5='3bed3985b0c51a989ad4006f6de8352b',
split=['test'],
content=['annotation'],
),
]))
config_generator = dict(
type='TextRecogConfigGenerator',
test_anns=[
dict(ann_file='textrecog_test.json'),
dict(dataset_postfix='857', ann_file='textrecog_test_857.json')
])
|