File size: 8,909 Bytes
0b4516f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp

import mmcv
import mmengine
import numpy as np

from mmocr.utils import crop_img, dump_ocr_data


def collect_files(img_dir, gt_dir, split_info):
    """Collect all images and their corresponding groundtruth files.

    Args:
        img_dir (str): The image directory
        gt_dir (str): The groundtruth directory
        split_info (dict): The split information for train/val/test

    Returns:
        files (list): The list of tuples (img_file, groundtruth_file)
    """
    assert isinstance(img_dir, str)
    assert img_dir
    assert isinstance(gt_dir, str)
    assert gt_dir
    assert isinstance(split_info, dict)
    assert split_info

    ann_list, imgs_list = [], []
    for group in split_info:
        for img in split_info[group]:
            image_path = osp.join(img_dir, img)
            anno_path = osp.join(gt_dir, 'groups', group,
                                 img.replace('jpg', 'json'))

            # Filtering out the missing images
            if not osp.exists(image_path) or not osp.exists(anno_path):
                continue

            imgs_list.append(image_path)
            ann_list.append(anno_path)

    files = list(zip(imgs_list, ann_list))
    assert len(files), f'No images found in {img_dir}'
    print(f'Loaded {len(files)} images from {img_dir}')

    return files


def collect_annotations(files, nproc=1):
    """Collect the annotation information.

    Args:
        files (list): The list of tuples (image_file, groundtruth_file)
        nproc (int): The number of process to collect annotations

    Returns:
        images (list): The list of image information dicts
    """
    assert isinstance(files, list)
    assert isinstance(nproc, int)

    if nproc > 1:
        images = mmengine.track_parallel_progress(
            load_img_info, files, nproc=nproc)
    else:
        images = mmengine.track_progress(load_img_info, files)

    return images


def load_img_info(files):
    """Load the information of one image.

    Args:
        files (tuple): The tuple of (img_file, groundtruth_file)

    Returns:
        img_info (dict): The dict of the img and annotation information
    """
    assert isinstance(files, tuple)

    img_file, gt_file = files
    assert osp.basename(gt_file).split('.')[0] == osp.basename(img_file).split(
        '.')[0]
    # Read imgs while ignoring orientations
    img = mmcv.imread(img_file, 'unchanged')

    img_info = dict(
        file_name=osp.join(osp.basename(img_file)),
        height=img.shape[0],
        width=img.shape[1],
        segm_file=osp.join(osp.basename(gt_file)))

    if osp.splitext(gt_file)[1] == '.json':
        img_info = load_json_info(gt_file, img_info)
    else:
        raise NotImplementedError

    return img_info


def load_json_info(gt_file, img_info):
    """Collect the annotation information.

    Annotation Format
    {
        'filedBBs': [{
            'poly_points': [[435,1406], [466,1406], [466,1439], [435,1439]],
            "type": "fieldCheckBox",
            "id": "f0",
            "isBlank": 1, # 0:text,1:handwriting,2:print,3:blank,4:signature,
        }], ...
        "transcriptions":{
            "f38": "CASE NUMBER",
            "f29": "July 1, 1949",
            "t20": "RANK",
            "t19": "COMPANY",
            ...
        }
    }

    Some special characters are used in the transcription:
    "«text»" indicates that "text" had a strikethrough
    "¿" indicates the transcriber could not read a character
    "§" indicates the whole line or word was illegible
    "" (empty string) is if the field was blank

    Args:
        gt_file (str): The path to ground-truth
        img_info (dict): The dict of the img and annotation information

    Returns:
        img_info (dict): The dict of the img and annotation information
    """
    assert isinstance(gt_file, str)
    assert isinstance(img_info, dict)

    annotation = mmengine.load(gt_file)
    anno_info = []

    # 'textBBs' contains the printed texts of the table while 'fieldBBs'
    #  contains the text filled by human.
    for box_type in ['textBBs', 'fieldBBs']:
        # NAF dataset only provides transcription GT for 'filedBBs', the
        # 'textBBs' is only used for detection task.
        if box_type == 'textBBs':
            continue
        for anno in annotation[box_type]:
            # Skip images containing detection annotations only
            if 'transcriptions' not in annotation.keys():
                continue
            # Skip boxes without recognition GT
            if anno['id'] not in annotation['transcriptions'].keys():
                continue

            word = annotation['transcriptions'][anno['id']]
            # Skip blank boxes
            if len(word) == 0:
                continue

            bbox = np.array(anno['poly_points']).reshape(1, 8)[0].tolist()

            anno = dict(bbox=bbox, word=word)
            anno_info.append(anno)

    img_info.update(anno_info=anno_info)

    return img_info


def generate_ann(root_path, split, image_infos, preserve_vertical):
    """Generate cropped annotations and label txt file.

    Args:
        root_path (str): The root path of the dataset
        split (str): The split of dataset. Namely: training or test
        image_infos (list[dict]): A list of dicts of the img and
            annotation information
        preserve_vertical (bool): Whether to preserve vertical texts
    """

    dst_image_root = osp.join(root_path, 'crops', split)
    ignore_image_root = osp.join(root_path, 'ignores', split)
    if split == 'training':
        dst_label_file = osp.join(root_path, 'train_label.json')
    elif split == 'val':
        dst_label_file = osp.join(root_path, 'val_label.json')
    elif split == 'test':
        dst_label_file = osp.join(root_path, 'test_label.json')
    else:
        raise NotImplementedError
    mmengine.mkdir_or_exist(dst_image_root)
    mmengine.mkdir_or_exist(ignore_image_root)

    img_info = []
    for image_info in image_infos:
        index = 1
        src_img_path = osp.join(root_path, 'imgs', image_info['file_name'])
        image = mmcv.imread(src_img_path)
        src_img_root = image_info['file_name'].split('.')[0]

        for anno in image_info['anno_info']:
            word = anno['word']
            word = word.strip('\u202a')  # Remove unicode control character
            word = word.replace('»',
                                '').replace('«',
                                            '')  # Remove strikethrough flag
            dst_img = crop_img(image, anno['bbox'], 0, 0)
            h, w, _ = dst_img.shape

            dst_img_name = f'{src_img_root}_{index}.png'
            index += 1
            # Skip invalid and illegible annotations
            if min(dst_img.shape) == 0 or '§' in word or '¿' in word or len(
                    word) == 0:
                continue
            # Skip vertical texts
            # (Do Not Filter For Val and Test Split)
            if (not preserve_vertical and h / w > 2) and split == 'training':
                dst_img_path = osp.join(ignore_image_root, dst_img_name)
                mmcv.imwrite(dst_img, dst_img_path)
                continue

            dst_img_path = osp.join(dst_image_root, dst_img_name)
            mmcv.imwrite(dst_img, dst_img_path)

            img_info.append({
                'file_name': dst_img_name,
                'anno_info': [{
                    'text': word
                }]
            })

    dump_ocr_data(img_info, dst_label_file, 'textrecog')


def parse_args():
    parser = argparse.ArgumentParser(
        description='Generate training, val, and test set of NAF ')
    parser.add_argument('root_path', help='Root dir path of NAF')
    parser.add_argument(
        '--preserve-vertical',
        help='Preserve samples containing vertical texts',
        action='store_true')
    parser.add_argument(
        '--nproc', default=1, type=int, help='Number of process')
    args = parser.parse_args()
    return args


def main():
    args = parse_args()
    root_path = args.root_path
    split_info = mmengine.load(
        osp.join(root_path, 'annotations', 'train_valid_test_split.json'))
    split_info['training'] = split_info.pop('train')
    split_info['val'] = split_info.pop('valid')
    for split in ['training', 'val', 'test']:
        print(f'Processing {split} set...')
        with mmengine.Timer(
                print_tmpl='It takes {}s to convert NAF annotation'):
            files = collect_files(
                osp.join(root_path, 'imgs'),
                osp.join(root_path, 'annotations'), split_info[split])
            image_infos = collect_annotations(files, nproc=args.nproc)
            generate_ann(root_path, split, image_infos, args.preserve_vertical)


if __name__ == '__main__':
    main()