Spaces:
Sleeping
Sleeping
File size: 8,909 Bytes
0b4516f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os.path as osp
import mmcv
import mmengine
import numpy as np
from mmocr.utils import crop_img, dump_ocr_data
def collect_files(img_dir, gt_dir, split_info):
"""Collect all images and their corresponding groundtruth files.
Args:
img_dir (str): The image directory
gt_dir (str): The groundtruth directory
split_info (dict): The split information for train/val/test
Returns:
files (list): The list of tuples (img_file, groundtruth_file)
"""
assert isinstance(img_dir, str)
assert img_dir
assert isinstance(gt_dir, str)
assert gt_dir
assert isinstance(split_info, dict)
assert split_info
ann_list, imgs_list = [], []
for group in split_info:
for img in split_info[group]:
image_path = osp.join(img_dir, img)
anno_path = osp.join(gt_dir, 'groups', group,
img.replace('jpg', 'json'))
# Filtering out the missing images
if not osp.exists(image_path) or not osp.exists(anno_path):
continue
imgs_list.append(image_path)
ann_list.append(anno_path)
files = list(zip(imgs_list, ann_list))
assert len(files), f'No images found in {img_dir}'
print(f'Loaded {len(files)} images from {img_dir}')
return files
def collect_annotations(files, nproc=1):
"""Collect the annotation information.
Args:
files (list): The list of tuples (image_file, groundtruth_file)
nproc (int): The number of process to collect annotations
Returns:
images (list): The list of image information dicts
"""
assert isinstance(files, list)
assert isinstance(nproc, int)
if nproc > 1:
images = mmengine.track_parallel_progress(
load_img_info, files, nproc=nproc)
else:
images = mmengine.track_progress(load_img_info, files)
return images
def load_img_info(files):
"""Load the information of one image.
Args:
files (tuple): The tuple of (img_file, groundtruth_file)
Returns:
img_info (dict): The dict of the img and annotation information
"""
assert isinstance(files, tuple)
img_file, gt_file = files
assert osp.basename(gt_file).split('.')[0] == osp.basename(img_file).split(
'.')[0]
# Read imgs while ignoring orientations
img = mmcv.imread(img_file, 'unchanged')
img_info = dict(
file_name=osp.join(osp.basename(img_file)),
height=img.shape[0],
width=img.shape[1],
segm_file=osp.join(osp.basename(gt_file)))
if osp.splitext(gt_file)[1] == '.json':
img_info = load_json_info(gt_file, img_info)
else:
raise NotImplementedError
return img_info
def load_json_info(gt_file, img_info):
"""Collect the annotation information.
Annotation Format
{
'filedBBs': [{
'poly_points': [[435,1406], [466,1406], [466,1439], [435,1439]],
"type": "fieldCheckBox",
"id": "f0",
"isBlank": 1, # 0:text,1:handwriting,2:print,3:blank,4:signature,
}], ...
"transcriptions":{
"f38": "CASE NUMBER",
"f29": "July 1, 1949",
"t20": "RANK",
"t19": "COMPANY",
...
}
}
Some special characters are used in the transcription:
"«text»" indicates that "text" had a strikethrough
"¿" indicates the transcriber could not read a character
"§" indicates the whole line or word was illegible
"" (empty string) is if the field was blank
Args:
gt_file (str): The path to ground-truth
img_info (dict): The dict of the img and annotation information
Returns:
img_info (dict): The dict of the img and annotation information
"""
assert isinstance(gt_file, str)
assert isinstance(img_info, dict)
annotation = mmengine.load(gt_file)
anno_info = []
# 'textBBs' contains the printed texts of the table while 'fieldBBs'
# contains the text filled by human.
for box_type in ['textBBs', 'fieldBBs']:
# NAF dataset only provides transcription GT for 'filedBBs', the
# 'textBBs' is only used for detection task.
if box_type == 'textBBs':
continue
for anno in annotation[box_type]:
# Skip images containing detection annotations only
if 'transcriptions' not in annotation.keys():
continue
# Skip boxes without recognition GT
if anno['id'] not in annotation['transcriptions'].keys():
continue
word = annotation['transcriptions'][anno['id']]
# Skip blank boxes
if len(word) == 0:
continue
bbox = np.array(anno['poly_points']).reshape(1, 8)[0].tolist()
anno = dict(bbox=bbox, word=word)
anno_info.append(anno)
img_info.update(anno_info=anno_info)
return img_info
def generate_ann(root_path, split, image_infos, preserve_vertical):
"""Generate cropped annotations and label txt file.
Args:
root_path (str): The root path of the dataset
split (str): The split of dataset. Namely: training or test
image_infos (list[dict]): A list of dicts of the img and
annotation information
preserve_vertical (bool): Whether to preserve vertical texts
"""
dst_image_root = osp.join(root_path, 'crops', split)
ignore_image_root = osp.join(root_path, 'ignores', split)
if split == 'training':
dst_label_file = osp.join(root_path, 'train_label.json')
elif split == 'val':
dst_label_file = osp.join(root_path, 'val_label.json')
elif split == 'test':
dst_label_file = osp.join(root_path, 'test_label.json')
else:
raise NotImplementedError
mmengine.mkdir_or_exist(dst_image_root)
mmengine.mkdir_or_exist(ignore_image_root)
img_info = []
for image_info in image_infos:
index = 1
src_img_path = osp.join(root_path, 'imgs', image_info['file_name'])
image = mmcv.imread(src_img_path)
src_img_root = image_info['file_name'].split('.')[0]
for anno in image_info['anno_info']:
word = anno['word']
word = word.strip('\u202a') # Remove unicode control character
word = word.replace('»',
'').replace('«',
'') # Remove strikethrough flag
dst_img = crop_img(image, anno['bbox'], 0, 0)
h, w, _ = dst_img.shape
dst_img_name = f'{src_img_root}_{index}.png'
index += 1
# Skip invalid and illegible annotations
if min(dst_img.shape) == 0 or '§' in word or '¿' in word or len(
word) == 0:
continue
# Skip vertical texts
# (Do Not Filter For Val and Test Split)
if (not preserve_vertical and h / w > 2) and split == 'training':
dst_img_path = osp.join(ignore_image_root, dst_img_name)
mmcv.imwrite(dst_img, dst_img_path)
continue
dst_img_path = osp.join(dst_image_root, dst_img_name)
mmcv.imwrite(dst_img, dst_img_path)
img_info.append({
'file_name': dst_img_name,
'anno_info': [{
'text': word
}]
})
dump_ocr_data(img_info, dst_label_file, 'textrecog')
def parse_args():
parser = argparse.ArgumentParser(
description='Generate training, val, and test set of NAF ')
parser.add_argument('root_path', help='Root dir path of NAF')
parser.add_argument(
'--preserve-vertical',
help='Preserve samples containing vertical texts',
action='store_true')
parser.add_argument(
'--nproc', default=1, type=int, help='Number of process')
args = parser.parse_args()
return args
def main():
args = parse_args()
root_path = args.root_path
split_info = mmengine.load(
osp.join(root_path, 'annotations', 'train_valid_test_split.json'))
split_info['training'] = split_info.pop('train')
split_info['val'] = split_info.pop('valid')
for split in ['training', 'val', 'test']:
print(f'Processing {split} set...')
with mmengine.Timer(
print_tmpl='It takes {}s to convert NAF annotation'):
files = collect_files(
osp.join(root_path, 'imgs'),
osp.join(root_path, 'annotations'), split_info[split])
image_infos = collect_annotations(files, nproc=args.nproc)
generate_ann(root_path, split, image_infos, args.preserve_vertical)
if __name__ == '__main__':
main()
|