File size: 5,606 Bytes
0b4516f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import json
import os
import os.path as osp

import cv2
import lmdb
import numpy as np

from mmocr.utils import list_from_file


def parse_line(line, format):
    if format == 'txt':
        img_name, text = line.split(' ')
    else:
        line = json.loads(line)
        img_name = line['filename']
        text = line['text']
    return img_name, text


def check_image_is_valid(imageBin):
    if imageBin is None:
        return False
    imageBuf = np.frombuffer(imageBin, dtype=np.uint8)
    img = cv2.imdecode(imageBuf, cv2.IMREAD_GRAYSCALE)
    imgH, imgW = img.shape[0], img.shape[1]
    if imgH * imgW == 0:
        return False
    return True


def write_cache(env, cache):
    with env.begin(write=True) as txn:
        cursor = txn.cursor()
        cursor.putmulti(cache, dupdata=False, overwrite=True)


def recog2lmdb(img_root,
               label_path,
               output,
               label_format='txt',
               label_only=False,
               batch_size=1000,
               encoding='utf-8',
               lmdb_map_size=1099511627776,
               verify=True):
    """Create text recognition dataset to LMDB format.

    Args:
        img_root (str): Path to images.
        label_path (str): Path to label file.
        output (str): LMDB output path.
        label_format (str): Format of the label file, either txt or jsonl.
        label_only (bool): Only convert label to lmdb format.
        batch_size (int): Number of files written to the cache each time.
        encoding (str): Label encoding method.
        lmdb_map_size (int): Maximum size database may grow to.
        verify (bool): If true, check the validity of
            every image.Defaults to True.

    E.g.
    This function supports MMOCR's recognition data format and the label file
    can be txt or jsonl, as follows:

        β”œβ”€β”€img_root
        |      |β€”β€” img1.jpg
        |      |β€”β€” img2.jpg
        |      |β€”β€” ...
        |β€”β€”label.txt (or label.jsonl)

        label.txt: img1.jpg HELLO
                   img2.jpg WORLD
                   ...

        label.jsonl: {'filename':'img1.jpg', 'text':'HELLO'}
                     {'filename':'img2.jpg', 'text':'WORLD'}
                     ...
    """
    # check label format
    assert osp.basename(label_path).split('.')[-1] == label_format
    # create lmdb env
    os.makedirs(output, exist_ok=True)
    env = lmdb.open(output, map_size=lmdb_map_size)
    # load label file
    anno_list = list_from_file(label_path, encoding=encoding)
    cache = []
    # index start from 1
    cnt = 1
    n_samples = len(anno_list)
    for anno in anno_list:
        label_key = 'label-%09d'.encode(encoding) % cnt
        img_name, text = parse_line(anno, label_format)
        if label_only:
            # convert only labels to lmdb
            line = json.dumps(
                dict(filename=img_name, text=text), ensure_ascii=False)
            cache.append((label_key, line.encode(encoding)))
        else:
            # convert both images and labels to lmdb
            img_path = osp.join(img_root, img_name)
            if not osp.exists(img_path):
                print('%s does not exist' % img_path)
                continue
            with open(img_path, 'rb') as f:
                image_bin = f.read()
            if verify:
                try:
                    if not check_image_is_valid(image_bin):
                        print('%s is not a valid image' % img_path)
                        continue
                except Exception:
                    print('error occurred at ', img_name)
            image_key = 'image-%09d'.encode(encoding) % cnt
            cache.append((image_key, image_bin))
            cache.append((label_key, text.encode(encoding)))

        if cnt % batch_size == 0:
            write_cache(env, cache)
            cache = []
            print('Written %d / %d' % (cnt, n_samples))
        cnt += 1
    n_samples = cnt - 1
    cache.append(
        ('num-samples'.encode(encoding), str(n_samples).encode(encoding)))
    write_cache(env, cache)
    print('Created lmdb dataset with %d samples' % n_samples)


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('label_path', type=str, help='Path to label file')
    parser.add_argument('output', type=str, help='Output lmdb path')
    parser.add_argument(
        '--img-root', '-i', type=str, help='Input imglist path')
    parser.add_argument(
        '--label-only',
        action='store_true',
        help='Only converter label to lmdb')
    parser.add_argument(
        '--label-format',
        '-f',
        default='txt',
        choices=['txt', 'jsonl'],
        help='The format of the label file, either txt or jsonl')
    parser.add_argument(
        '--batch-size',
        '-b',
        type=int,
        default=1000,
        help='Processing batch size, defaults to 1000')
    parser.add_argument(
        '--encoding',
        '-e',
        type=str,
        default='utf8',
        help='Bytes coding scheme, defaults to utf8')
    parser.add_argument(
        '--lmdb-map-size',
        '-m',
        type=int,
        default=1099511627776,
        help='Maximum size database may grow to, '
        'defaults to 1099511627776 bytes (1TB)')
    opt = parser.parse_args()

    assert opt.img_root or opt.label_only
    recog2lmdb(opt.img_root, opt.label_path, opt.output, opt.label_format,
               opt.label_only, opt.batch_size, opt.encoding, opt.lmdb_map_size)


if __name__ == '__main__':
    main()