File size: 8,392 Bytes
0b4516f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import math
import os
import os.path as osp
import xml.etree.ElementTree as ET

import mmcv
import mmengine

from mmocr.utils import crop_img, dump_ocr_data


def collect_files(img_dir, gt_dir, ratio):
    """Collect all images and their corresponding groundtruth files.

    Args:
        img_dir (str): The image directory
        gt_dir (str): The groundtruth directory
        ratio (float): Split ratio for val set

    Returns:
        files (list): The list of tuples (img_file, groundtruth_file)
    """
    assert isinstance(img_dir, str)
    assert img_dir
    assert isinstance(gt_dir, str)
    assert gt_dir
    assert isinstance(ratio, float)
    assert ratio < 1.0, 'val_ratio should be a float between 0.0 to 1.0'

    ann_list, imgs_list = [], []
    for img_file in os.listdir(img_dir):
        ann_list.append(osp.join(gt_dir, img_file.split('.')[0] + '.xml'))
        imgs_list.append(osp.join(img_dir, img_file))

    all_files = list(zip(sorted(imgs_list), sorted(ann_list)))
    assert len(all_files), f'No images found in {img_dir}'
    print(f'Loaded {len(all_files)} images from {img_dir}')

    trn_files, val_files = [], []
    if ratio > 0:
        for i, file in enumerate(all_files):
            if i % math.floor(1 / ratio):
                trn_files.append(file)
            else:
                val_files.append(file)
    else:
        trn_files, val_files = all_files, []

    print(f'training #{len(trn_files)}, val #{len(val_files)}')

    return trn_files, val_files


def collect_annotations(files, nproc=1):
    """Collect the annotation information.

    Args:
        files (list): The list of tuples (image_file, groundtruth_file)
        nproc (int): The number of process to collect annotations

    Returns:
        images (list): The list of image information dicts
    """
    assert isinstance(files, list)
    assert isinstance(nproc, int)

    if nproc > 1:
        images = mmengine.track_parallel_progress(
            load_img_info, files, nproc=nproc)
    else:
        images = mmengine.track_progress(load_img_info, files)

    return images


def load_img_info(files):
    """Load the information of one image.

    Args:
        files (tuple): The tuple of (img_file, groundtruth_file)

    Returns:
        img_info (dict): The dict of the img and annotation information
    """
    assert isinstance(files, tuple)

    img_file, gt_file = files
    assert osp.basename(gt_file).split('.')[0] == osp.basename(img_file).split(
        '.')[0]
    # read imgs while ignoring orientations
    img = mmcv.imread(img_file, 'unchanged')

    img_info = dict(
        file_name=osp.join(osp.basename(img_file)),
        height=img.shape[0],
        width=img.shape[1],
        segm_file=osp.join(osp.basename(gt_file)))

    if osp.splitext(gt_file)[1] == '.xml':
        img_info = load_xml_info(gt_file, img_info)
    else:
        raise NotImplementedError

    return img_info


def load_xml_info(gt_file, img_info):
    """Collect the annotation information.

    Annotation Format
    <image>
        <imageName>DSC02306.JPG</imageName>
        <resolution x="640" y="480" />
        <words>
            <word x="61" y="140" width="566" height="107">
                <character x="61" y="147" width="75" height="94" char="C" />
                <character x="173" y="147" width="77" height="93" char="L" />
                <character x="251" y="146" width="83" height="96" char="A" />
                <character x="335" y="146" width="75" height="97" char="V" />
                <character x="409" y="140" width="52" height="105" char="I" />
                <character x="464" y="147" width="76" height="96" char="T" />
                <character x="538" y="154" width="89" height="93" char="A" />
            </word>
        </words>
        <illumination>no</illumination>
        <difficulty>2</difficulty>
        <tag>
        </tag>
    </image>

    Args:
        gt_file (str): The path to ground-truth
        img_info (dict): The dict of the img and annotation information

    Returns:
        img_info (dict): The dict of the img and annotation information
    """

    obj = ET.parse(gt_file)
    root = obj.getroot()
    anno_info = []
    for word in root.iter('word'):
        x, y = max(0, int(word.attrib['x'])), max(0, int(word.attrib['y']))
        w, h = int(word.attrib['width']), int(word.attrib['height'])
        bbox = [x, y, x + w, y, x + w, y + h, x, y + h]
        chars = []
        for character in word.iter('character'):
            chars.append(character.attrib['char'])
        word = ''.join(chars)
        if len(word) == 0:
            continue
        anno = dict(bbox=bbox, word=word)
        anno_info.append(anno)

    img_info.update(anno_info=anno_info)

    return img_info


def generate_ann(root_path, split, image_infos, preserve_vertical):
    """Generate cropped annotations and label txt file.

    Args:
        root_path (str): The root path of the dataset
        split (str): The split of dataset. Namely: training or test
        image_infos (list[dict]): A list of dicts of the img and
            annotation information
        preserve_vertical (bool): Whether to preserve vertical texts
        format (str): Annotation format, should be either 'txt' or 'jsonl'
    """

    dst_image_root = osp.join(root_path, 'crops', split)
    ignore_image_root = osp.join(root_path, 'ignores', split)
    if split == 'training':
        dst_label_file = osp.join(root_path, 'train_label.json')
    elif split == 'val':
        dst_label_file = osp.join(root_path, 'val_label.json')
    mmengine.mkdir_or_exist(dst_image_root)
    mmengine.mkdir_or_exist(ignore_image_root)

    img_info = []
    for image_info in image_infos:
        index = 1
        src_img_path = osp.join(root_path, 'imgs', image_info['file_name'])
        image = mmcv.imread(src_img_path)
        src_img_root = image_info['file_name'].split('.')[0]

        for anno in image_info['anno_info']:
            word = anno['word']
            dst_img = crop_img(image, anno['bbox'], 0, 0)
            h, w, _ = dst_img.shape

            dst_img_name = f'{src_img_root}_{index}.png'
            index += 1
            # Skip invalid annotations
            if min(dst_img.shape) == 0:
                continue
            # Filter out vertical texts
            if not preserve_vertical and h / w > 2:
                dst_img_path = osp.join(ignore_image_root, dst_img_name)
                mmcv.imwrite(dst_img, dst_img_path)
                continue

            dst_img_path = osp.join(dst_image_root, dst_img_name)
            mmcv.imwrite(dst_img, dst_img_path)

            img_info.append({
                'file_name': dst_img_name,
                'anno_info': [{
                    'text': word
                }]
            })

    ensure_ascii = dict(ensure_ascii=False)
    dump_ocr_data(img_info, dst_label_file, 'textrecog', **ensure_ascii)


def parse_args():
    parser = argparse.ArgumentParser(
        description='Generate training and val set of KAIST ')
    parser.add_argument('root_path', help='Root dir path of KAIST')
    parser.add_argument(
        '--val-ratio', help='Split ratio for val set', default=0.0, type=float)
    parser.add_argument(
        '--preserve-vertical',
        help='Preserve samples containing vertical texts',
        action='store_true')
    parser.add_argument(
        '--nproc', default=1, type=int, help='Number of process')
    args = parser.parse_args()
    return args


def main():
    args = parse_args()
    root_path = args.root_path
    ratio = args.val_ratio

    trn_files, val_files = collect_files(
        osp.join(root_path, 'imgs'), osp.join(root_path, 'annotations'), ratio)

    # Train set
    trn_infos = collect_annotations(trn_files, nproc=args.nproc)
    with mmengine.Timer(
            print_tmpl='It takes {}s to convert KAIST Training annotation'):
        generate_ann(root_path, 'training', trn_infos, args.preserve_vertical)

    # Val set
    if len(val_files) > 0:
        val_infos = collect_annotations(val_files, nproc=args.nproc)
        with mmengine.Timer(
                print_tmpl='It takes {}s to convert KAIST Val annotation'):
            generate_ann(root_path, 'val', val_infos, args.preserve_vertical)


if __name__ == '__main__':
    main()