Spaces:
Sleeping
Sleeping
File size: 1,893 Bytes
0b4516f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
# Copyright (c) OpenMMLab. All rights reserved.
import unittest
import numpy as np
import torch
from mmocr.utils import point_distance, points_center
class TestPointDistance(unittest.TestCase):
def setUp(self) -> None:
self.p1_list = [1, 2]
self.p2_list = [2, 2]
self.p1_array = np.array([1, 2])
self.p2_array = np.array([2, 2])
self.p1_tensor = torch.Tensor([1, 2])
self.p2_tensor = torch.Tensor([2, 2])
self.invalid_p = [1, 2, 3]
def test_point_distance(self):
# list
self.assertEqual(point_distance(self.p1_list, self.p2_list), 1)
self.assertEqual(point_distance(self.p1_list, self.p1_list), 0)
# array
self.assertEqual(point_distance(self.p1_array, self.p2_array), 1)
self.assertEqual(point_distance(self.p1_array, self.p1_array), 0)
# tensor
self.assertEqual(point_distance(self.p1_tensor, self.p2_tensor), 1)
self.assertEqual(point_distance(self.p1_tensor, self.p1_tensor), 0)
with self.assertRaises(AssertionError):
point_distance(self.invalid_p, self.invalid_p)
class TestPointCenter(unittest.TestCase):
def setUp(self) -> None:
self.point_list = [1, 2, 3, 4]
self.point_nparray = np.array([1, 2, 3, 4])
self.point_tensor = torch.Tensor([1, 2, 3, 4])
self.incorrect_input = [1, 3, 4]
self.gt = np.array([2, 3])
def test_point_center(self):
# list
self.assertTrue(
np.array_equal(points_center(self.point_list), self.gt))
# array
self.assertTrue(
np.array_equal(points_center(self.point_nparray), self.gt))
# tensor
self.assertTrue(
np.array_equal(points_center(self.point_tensor), self.gt))
with self.assertRaises(AssertionError):
points_center(self.incorrect_input)
|