Spaces:
Sleeping
Sleeping
File size: 3,974 Bytes
24c4def |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import os.path as osp
from mmengine.fileio import load
from tabulate import tabulate
class BaseWeightList:
"""Class for generating model list in markdown format.
Args:
dataset_list (list[str]): List of dataset names.
table_header (list[str]): List of table header.
msg (str): Message to be displayed.
task_abbr (str): Abbreviation of task name.
metric_name (str): Metric name.
"""
base_url: str = 'https://github.com/open-mmlab/mmocr/blob/1.x/'
table_cfg: dict = dict(
tablefmt='pipe', floatfmt='.2f', numalign='right', stralign='center')
dataset_list: list
table_header: list
msg: str
task_abbr: str
metric_name: str
def __init__(self):
data = (d + f' ({self.metric_name})' for d in self.dataset_list)
self.table_header = ['Model', 'README', *data]
def _get_model_info(self, task_name: str):
meta_indexes = load('../../model-index.yml')
for meta_path in meta_indexes['Import']:
meta_path = osp.join('../../', meta_path)
metainfo = load(meta_path)
collection2md = {}
for item in metainfo['Collections']:
url = self.base_url + item['README']
collection2md[item['Name']] = f'[link]({url})'
for item in metainfo['Models']:
if task_name not in item['Config']:
continue
name = f'`{item["Name"]}`'
if item.get('Alias', None):
if isinstance(item['Alias'], str):
item['Alias'] = [item['Alias']]
aliases = [f'`{alias}`' for alias in item['Alias']]
aliases.append(name)
name = ' / '.join(aliases)
readme = collection2md[item['In Collection']]
eval_res = self._get_eval_res(item)
yield (name, readme, *eval_res)
def _get_eval_res(self, item):
eval_res = {k: '-' for k in self.dataset_list}
for res in item['Results']:
if res['Dataset'] in self.dataset_list:
eval_res[res['Dataset']] = res['Metrics'][self.metric_name]
return (eval_res[k] for k in self.dataset_list)
def gen_model_list(self):
content = f'\n{self.msg}\n'
content += '```{table}\n:class: model-summary nowrap field-list '
content += 'table table-hover\n'
content += tabulate(
self._get_model_info(self.task_abbr), self.table_header,
**self.table_cfg)
content += '\n```\n'
return content
class TextDetWeightList(BaseWeightList):
dataset_list = ['ICDAR2015', 'CTW1500', 'Totaltext']
msg = '### Text Detection'
task_abbr = 'textdet'
metric_name = 'hmean-iou'
class TextRecWeightList(BaseWeightList):
dataset_list = [
'Avg', 'IIIT5K', 'SVT', 'ICDAR2013', 'ICDAR2015', 'SVTP', 'CT80'
]
msg = ('### Text Recognition\n'
'```{note}\n'
'Avg is the average on IIIT5K, SVT, ICDAR2013, ICDAR2015, SVTP,'
' CT80.\n```\n')
task_abbr = 'textrecog'
metric_name = 'word_acc'
def _get_eval_res(self, item):
eval_res = {k: '-' for k in self.dataset_list}
avg = []
for res in item['Results']:
if res['Dataset'] in self.dataset_list:
eval_res[res['Dataset']] = res['Metrics'][self.metric_name]
avg.append(res['Metrics'][self.metric_name])
eval_res['Avg'] = sum(avg) / len(avg)
return (eval_res[k] for k in self.dataset_list)
class KIEWeightList(BaseWeightList):
dataset_list = ['wildreceipt']
msg = '### Key Information Extraction'
task_abbr = 'kie'
metric_name = 'macro_f1'
def gen_weight_list():
content = TextDetWeightList().gen_model_list()
content += TextRecWeightList().gen_model_list()
content += KIEWeightList().gen_model_list()
return content
|