File size: 2,097 Bytes
24c4def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
_base_ = [
    '_base_svtr-tiny.py',
    '../_base_/default_runtime.py',
    '../_base_/datasets/mjsynth.py',
    '../_base_/datasets/synthtext.py',
    '../_base_/datasets/cute80.py',
    '../_base_/datasets/iiit5k.py',
    '../_base_/datasets/svt.py',
    '../_base_/datasets/svtp.py',
    '../_base_/datasets/icdar2013.py',
    '../_base_/datasets/icdar2015.py',
    '../_base_/schedules/schedule_adam_base.py',
]

train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=20, val_interval=1)

optim_wrapper = dict(
    type='OptimWrapper',
    optimizer=dict(
        type='AdamW',
        lr=5 / (10**4) * 2048 / 2048,
        betas=(0.9, 0.99),
        eps=8e-8,
        weight_decay=0.05))

param_scheduler = [
    dict(
        type='LinearLR',
        start_factor=0.5,
        end_factor=1.,
        end=2,
        verbose=False,
        convert_to_iter_based=True),
    dict(
        type='CosineAnnealingLR',
        T_max=19,
        begin=2,
        end=20,
        verbose=False,
        convert_to_iter_based=True),
]

# dataset settings
train_list = [_base_.mjsynth_textrecog_train, _base_.synthtext_textrecog_train]
test_list = [
    _base_.cute80_textrecog_test, _base_.iiit5k_textrecog_test,
    _base_.svt_textrecog_test, _base_.svtp_textrecog_test,
    _base_.icdar2013_textrecog_test, _base_.icdar2015_textrecog_test
]

val_evaluator = dict(
    dataset_prefixes=['CUTE80', 'IIIT5K', 'SVT', 'SVTP', 'IC13', 'IC15'])
test_evaluator = val_evaluator

train_dataloader = dict(
    batch_size=512,
    num_workers=24,
    persistent_workers=True,
    pin_memory=True,
    sampler=dict(type='DefaultSampler', shuffle=True),
    dataset=dict(
        type='ConcatDataset',
        datasets=train_list,
        pipeline=_base_.train_pipeline))

val_dataloader = dict(
    batch_size=128,
    num_workers=8,
    persistent_workers=True,
    pin_memory=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type='ConcatDataset',
        datasets=test_list,
        pipeline=_base_.test_pipeline))

test_dataloader = val_dataloader