File size: 1,164 Bytes
24c4def
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
_base_ = [
    '_base_master_resnet31.py',
    '../_base_/datasets/toy_data.py',
    '../_base_/default_runtime.py',
    '../_base_/schedules/schedule_adam_base.py',
]

optim_wrapper = dict(optimizer=dict(lr=4e-4))
train_cfg = dict(max_epochs=12)
# learning policy
param_scheduler = [
    dict(type='LinearLR', end=100, by_epoch=False),
    dict(type='MultiStepLR', milestones=[11], end=12),
]

# dataset settings
train_list = [_base_.toy_rec_train]
test_list = [_base_.toy_rec_test]

train_dataset = dict(
    type='ConcatDataset', datasets=train_list, pipeline=_base_.train_pipeline)
test_dataset = dict(
    type='ConcatDataset', datasets=test_list, pipeline=_base_.test_pipeline)

train_dataloader = dict(
    batch_size=2,
    num_workers=1,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=True),
    dataset=train_dataset)

val_dataloader = dict(
    batch_size=2,
    num_workers=1,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=test_dataset)

test_dataloader = val_dataloader

val_evaluator = dict(dataset_prefixes=['Toy'])
test_evaluator = val_evaluator