Spaces:
Sleeping
Sleeping
File size: 3,703 Bytes
24c4def |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
# MASTER
> [MASTER: Multi-aspect non-local network for scene text recognition](https://arxiv.org/abs/1910.02562)
<!-- [ALGORITHM] -->
## Abstract
Attention-based scene text recognizers have gained huge success, which leverages a more compact intermediate representation to learn 1d- or 2d- attention by a RNN-based encoder-decoder architecture. However, such methods suffer from attention-drift problem because high similarity among encoded features leads to attention confusion under the RNN-based local attention mechanism. Moreover, RNN-based methods have low efficiency due to poor parallelization. To overcome these problems, we propose the MASTER, a self-attention based scene text recognizer that (1) not only encodes the input-output attention but also learns self-attention which encodes feature-feature and target-target relationships inside the encoder and decoder and (2) learns a more powerful and robust intermediate representation to spatial distortion, and (3) owns a great training efficiency because of high training parallelization and a high-speed inference because of an efficient memory-cache mechanism. Extensive experiments on various benchmarks demonstrate the superior performance of our MASTER on both regular and irregular scene text.
<div align=center>
<img src="https://user-images.githubusercontent.com/65173622/164642001-037f81b7-37dd-4808-a6a9-09ff6f6a17ea.JPG">
</div>
## Dataset
### Train Dataset
| trainset | instance_num | repeat_num | source |
| :-------: | :----------: | :--------: | :----: |
| SynthText | 7266686 | 1 | synth |
| SynthAdd | 1216889 | 1 | synth |
| Syn90k | 8919273 | 1 | synth |
### Test Dataset
| testset | instance_num | type |
| :-----: | :----------: | :-------: |
| IIIT5K | 3000 | regular |
| SVT | 647 | regular |
| IC13 | 1015 | regular |
| IC15 | 2077 | irregular |
| SVTP | 645 | irregular |
| CT80 | 288 | irregular |
## Results and Models
| Methods | Backbone | | Regular Text | | | | Irregular Text | | download |
| :-------------------------------------------------------------: | :-----------: | :----: | :----------: | :-------: | :-: | :-------: | :------------: | :----: | :---------------------------------------------------------------: |
| | | IIIT5K | SVT | IC13-1015 | | IC15-2077 | SVTP | CT80 | |
| [MASTER](/configs/textrecog/master/master_resnet31_12e_st_mj_sa.py) | R31-GCAModule | 0.9490 | 0.8887 | 0.9517 | | 0.7650 | 0.8465 | 0.8889 | [model](https://download.openmmlab.com/mmocr/textrecog/master/master_resnet31_12e_st_mj_sa/master_resnet31_12e_st_mj_sa_20220915_152443-f4a5cabc.pth) \| [log](https://download.openmmlab.com/mmocr/textrecog/master/master_resnet31_12e_st_mj_sa/20220915_152443.log) |
| [MASTER-TTA](/configs/textrecog/master/master_resnet31_12e_st_mj_sa.py) | R31-GCAModule | 0.9450 | 0.8887 | 0.9478 | | 0.7906 | 0.8481 | 0.8958 | |
## Citation
```bibtex
@article{Lu2021MASTER,
title={MASTER: Multi-Aspect Non-local Network for Scene Text Recognition},
author={Ning Lu and Wenwen Yu and Xianbiao Qi and Yihao Chen and Ping Gong and Rong Xiao and Xiang Bai},
journal={Pattern Recognition},
year={2021}
}
```
|