Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Import gradio as gr
|
2 |
+
from transformers import PreTrainedTokenizerFast, BartForConditionalGeneration
|
3 |
+
# from transformers import로 시작하는 import 문을 보면
|
4 |
+
# 많은 경우 AutoTokenizer, AutoModel
|
5 |
+
# tokenizer = AutoTokenizer.from_pretrained("model 이름 어쩌고 저쩌고")
|
6 |
+
# BART는 encoder-decoder 모델의 예시
|
7 |
+
|
8 |
+
model_name = "ainize/kobart-news"
|
9 |
+
tokenizer = PreTrainedTokenizerFast.from_pretrained(model_name)
|
10 |
+
model = BartForConditionalGeneration.from_pretrained(model_name)
|
11 |
+
#def summ(txt):
|
12 |
+
input_ids=tokenizer.encode(txt, return_tensors="pt")
|
13 |
+
summary_text_ids=model.generate(
|
14 |
+
input_ids=input_ids,
|
15 |
+
bos_token_id=model.config.bos_token_id,
|
16 |
+
eos_token_id=model.config.eos_token_id,
|
17 |
+
length_penalty=2.0,
|
18 |
+
max_length=142
|
19 |
+
min_length=56,
|
20 |
+
num_beams=4)
|
21 |
+
return tokenizer.decode(summary_text_ids[0],skip_special_tokens=True)
|
22 |
+
|
23 |
+
interface=gr.Interface(summ,[gr.Textbox(label="origina text")],[gr.Textbox(label="summary")])
|
24 |
+
interface.launch()
|