|
from typing import List |
|
from langchain.chains.combine_documents.stuff import StuffDocumentsChain |
|
from langchain.docstore.document import Document |
|
|
|
from langchain.chat_models import ChatOpenAI |
|
from knowledge_gpt.core.debug import FakeChatModel |
|
from langchain.chat_models.base import BaseChatModel |
|
|
|
|
|
def pop_docs_upto_limit( |
|
query: str, chain: StuffDocumentsChain, docs: List[Document], max_len: int |
|
) -> List[Document]: |
|
"""Pops documents from a list until the final prompt length is less |
|
than the max length.""" |
|
|
|
token_count: int = chain.prompt_length(docs, question=query) |
|
|
|
while token_count > max_len and len(docs) > 0: |
|
docs.pop() |
|
token_count = chain.prompt_length(docs, question=query) |
|
|
|
return docs |
|
|
|
|
|
def get_llm(model: str, **kwargs) -> BaseChatModel: |
|
if model == "debug": |
|
return FakeChatModel() |
|
|
|
if "gpt" in model: |
|
return ChatOpenAI(model=model, **kwargs) |
|
|
|
raise NotImplementedError(f"Model {model} not supported!") |
|
|