Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
from fuzzywuzzy import process | |
from langchain_community.llms import LlamaCpp | |
from langchain_core.callbacks import StreamingStdOutCallbackHandler | |
from langchain_core.prompts import PromptTemplate | |
# Load the CSV files into DataFrames with Windows-1252 encoding | |
df = pd.read_csv('location.csv', encoding='Windows-1252') | |
df2 = pd.read_csv('train.csv') | |
# Initialize the LlamaCpp model | |
llm = LlamaCpp( | |
model_path="unsloth.Q5_K_M.gguf", | |
temperature=0.01, | |
max_tokens=500, | |
top_p=3, | |
callbacks=[StreamingStdOutCallbackHandler()], | |
verbose=False, | |
stop=["###"] | |
) | |
# Define the prompt template | |
template = """Below is an instruction that describes a task, paired with an input that provides further context. Write a lengthy detailed response that appropriately completes the request. | |
### Instruction: | |
{instruction} | |
### Input: | |
{input} | |
### Response: | |
{response}""" | |
prompt = PromptTemplate.from_template(template) | |
# Function to find the best matching context based on user input | |
def find_best_match(query): | |
questions = df2['Question'].tolist() | |
contexts = df2['Context'].tolist() | |
# Find the best match | |
best_match = process.extractOne(query, questions) | |
if best_match: | |
index = questions.index(best_match[0]) | |
return contexts[index] | |
return "No relevant information found." | |
# Function to truncate response at the nearest full stop | |
def truncate_at_full_stop(text, max_length=500): | |
if len(text) <= max_length: | |
return text | |
truncated = text[:max_length] | |
print(f"Truncated text: {truncated}") | |
last_period = truncated.rfind('.') | |
print(f"Last period index: {last_period}") | |
if last_period != -1: | |
return truncated[:last_period + 1] | |
return truncated | |
# Initialize session state for selected service, chat history, and AI history | |
if 'selected_service' not in st.session_state: | |
st.session_state.selected_service = "Home" | |
if 'chat_history' not in st.session_state: | |
st.session_state.chat_history = [] | |
if 'history' not in st.session_state: | |
st.session_state.history = [] | |
if 'input' not in st.session_state: | |
st.session_state['input'] = '' | |
# Sidebar for selecting services | |
with st.sidebar: | |
st.title("Select the Service") | |
# Create buttons for each service | |
if st.button('Medicine Services'): | |
st.session_state.selected_service = "Medicine Services" | |
if st.button('Kendra Locator'): | |
st.session_state.selected_service = "Kendra Locator" | |
if st.button('Assistant'): | |
st.session_state.selected_service = "Assistant" | |
# Main content area based on selected service | |
if st.session_state.selected_service == "Home": | |
st.title("Welcome to Medical Service Center") | |
st.write("Explore the options in the sidebar to get started.") | |
elif st.session_state.selected_service == "Medicine Services": | |
st.title("Medicine Services") | |
# Display chat history | |
for chat in st.session_state.chat_history: | |
st.write(f"**User:** {chat['user']}") | |
st.write(f"**Bot:** {chat['bot']}") | |
# User input section | |
def handle_input(): | |
user_input = st.session_state['input'] | |
if user_input: | |
response = find_best_match(user_input) | |
st.session_state.chat_history.append({"user": user_input, "bot": response}) | |
st.session_state['input'] = '' | |
# Persistent text input at the top | |
st.text_input("Enter medicine:", key="input", on_change=handle_input) | |
elif st.session_state.selected_service == "Kendra Locator": | |
st.title("Kendra Locator") | |
display_option = st.selectbox("Select:", ["Address", "Email"]) | |
pin_code_input = st.text_input("Enter Pin Code:") | |
if st.button("Locate"): | |
if pin_code_input: | |
result = df[df['Pin'].astype(str) == pin_code_input] | |
if not result.empty: | |
if display_option == "Address": | |
st.write(f"Address: {result['Address'].values[0]}") | |
elif display_option == "Email": | |
st.write(f"Email: {result['Email'].values[0]}") | |
else: | |
st.write("No results found.") | |
else: | |
st.write("Please enter a pin code.") | |
elif st.session_state.selected_service == "Assistant": | |
st.title("Query Assistance") | |
# Display AI chat history | |
for chat in st.session_state.history: | |
st.write(f"**User Query:** {chat['user']}") | |
st.write(f"**Chatbot:** {chat['bot']}") | |
# Function to handle user input | |
def handle_input(): | |
user_input = st.session_state['input'] | |
if user_input: | |
# Format the prompt | |
formatted_prompt = prompt.format( | |
instruction="You are an all-knowing Medical AI. Provide detailed responses to only medicine-related queries.", | |
input=user_input, | |
response="" # Leave this blank for generation! | |
) | |
# Generate response | |
response = llm.invoke(formatted_prompt) | |
# Truncate response if necessary | |
truncated_response = truncate_at_full_stop(response) | |
# Update the chat history | |
st.session_state.history.append({"user": user_input, "bot": truncated_response}) | |
# Clear the input box | |
st.session_state['input'] = '' | |
# Persistent text input at the top | |
st.text_input("Enter Query:", key="input", on_change=handle_input) | |