Spaces:
Runtime error
Runtime error
File size: 6,350 Bytes
ed7b89b 204ccd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import gradio as gr
from gradio import Theme
import os, cv2, torch, time, random
import numpy as np
from moviepy.editor import *
import boto3
from botocore.client import Config
from botocore.exceptions import NoCredentialsError
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
from PIL import Image
from yt_dlp import YoutubeDL
pipe = DiffusionPipeline.from_pretrained("timbrooks/instruct-pix2pix", torch_dtype=torch.float16, safety_checker=None)
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.enable_xformers_memory_efficient_attention()
pipe.unet.to(memory_format=torch.channels_last)
pipe = pipe.to("cuda")
s3_access_key = "juj22qxqxql7u2pl6nomgxu3ip7a"
s3_secret_key = "j3uwidtozhboy5vczhymhzkkjsaumznnqlzck5zjs5qxgsung4ukk"
s3_endpoint = "https://gateway.storjshare.io"
s3 = boto3.client("s3", aws_access_key_id=s3_access_key, aws_secret_access_key=s3_secret_key, endpoint_url=s3_endpoint, config=Config(signature_version="s3v4"))
my_theme = Theme.from_hub("bethecloud/storj_theme")
def download_video(url):
ydl_opts = {'overwrites':True, 'format':'bestvideo[ext=mp4]+bestaudio[ext=m4a]/mp4', 'outtmpl':'/content/video.mp4'}
with YoutubeDL(ydl_opts) as ydl:
ydl.download(url)
return f"/content/video.mp4"
def pix2pix(prompt, text_guidance_scale, image_guidance_scale, image, steps, neg_prompt="", width=512, height=512, seed=0):
if seed == 0:
seed = random.randint(0, 2147483647)
generator = torch.Generator("cuda").manual_seed(seed)
try:
image = Image.open(image)
ratio = min(height / image.height, width / image.width)
image = image.resize((int(image.width * ratio), int(image.height * ratio)), Image.LANCZOS)
result = pipe(
prompt,
negative_prompt=neg_prompt,
image=image,
num_inference_steps=int(steps),
image_guidance_scale=image_guidance_scale,
guidance_scale=text_guidance_scale,
generator=generator,
)
return result.images, result.nsfw_content_detected, seed
except Exception as e:
return None, None, error_str(e)
def error_str(error, title="Error"):
return (
f"""#### {title}
{error}"""
if error
else ""
)
def get_frames(video_in):
frames = []
clip = VideoFileClip(video_in)
if clip.fps > 30:
print("vide rate is over 30, resetting to 30")
clip_resized = clip.resize(height=512)
clip_resized.write_videofile("video_resized.mp4", fps=30, verbose=False)
else:
print("video rate is OK")
clip_resized = clip.resize(height=512)
clip_resized.write_videofile("video_resized.mp4", fps=clip.fps, verbose=False)
print("video resized to 512 height")
cap= cv2.VideoCapture("video_resized.mp4")
fps = cap.get(cv2.CAP_PROP_FPS)
print("video fps: " + str(fps))
i=0
while(cap.isOpened()):
ret, frame = cap.read()
if ret == False:
break
cv2.imwrite('in'+str(i)+'.jpg',frame)
frames.append('in'+str(i)+'.jpg')
i+=1
cap.release()
cv2.destroyAllWindows()
print("broke the video into frames")
return frames, fps
def create_video(frames, fps):
clips = [ImageClip(m).set_duration(1 / fps) for m in frames]
concat_clip = concatenate_videoclips(clips, method="compose")
concat_clip.write_videofile("/content/output.mp4", fps=fps, verbose=False)
return "/content/output.mp4"
def infer(prompt,video_in, seed_in, trim_value):
print(prompt)
break_vid = get_frames(video_in)
frames_list= break_vid[0]
fps = break_vid[1]
n_frame = int(trim_value*fps)
if n_frame >= len(frames_list):
print("video is shorter than the cut value")
n_frame = len(frames_list)
result_frames = []
print("set stop frames to: " + str(n_frame))
for i in frames_list[0:int(n_frame)]:
pix2pix_img = pix2pix(prompt,5.5,1.5,i,15,"",512,512,seed_in)
images = pix2pix_img[0]
rgb_im = images[0].convert("RGB")
rgb_im.save(f"out-{i}.jpg")
result_frames.append(f"out-{i}.jpg")
print("frame " + i + "/" + str(n_frame) + ": done;")
final_vid = create_video(result_frames, fps)
print("Done!")
return final_vid
def upload_to_storj(bucket_name, file_path):
try:
file_name = os.path.basename(file_path)
s3.upload_file(file_path, bucket_name, file_name)
print(f"{file_name} uploaded to {bucket_name}")
except NoCredentialsError:
print("Credentials not available")
with gr.Blocks(theme=my_theme) as demo:
with gr.Column(elem_id="col-container"):
with gr.Row():
with gr.Column():
input_text = gr.Textbox(show_label=False, value="https://link.storjshare.io/s/jwn3ljgyj4ynlg6qtqj6yrbo63ha/demo/dancing.mp4?view")
input_download_button = gr.Button(value="Enter a link from Storj Linkshare")
prompt = gr.Textbox(label="Prompt", placeholder="Enter new style of video", show_label=False, elem_id="prompt-in")
video_inp = gr.Video(label="Video source", source="upload", type="filepath", elem_id="input-vid")
input_download_button.click(download_video, inputs=[input_text], outputs=[video_inp])
with gr.Column():
video_out = gr.Video(label="Pix2pix video result", type="filepath", elem_id="video-output")
with gr.Row():
seed_inp = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, value=69)
trim_in = gr.Slider(label="Cut video at (s)", minimun=1, maximum=600, step=1, value=1)
submit_btn = gr.Button("Generate transformed video with Storj")
inputs = [prompt,video_inp,seed_inp, trim_in]
def process_and_upload(prompt, video_inp, seed_inp, trim_in):
final_vid = infer(prompt, video_inp, seed_inp, trim_in)
# Specify the name of the bucket to upload to
storj_bucket_name = "huggingface-demo"
upload_to_storj(storj_bucket_name, final_vid)
return final_vid
submit_btn.click(process_and_upload, inputs=inputs, outputs=[video_out])
demo.queue().launch(debug=True, share=True, inline=False) |