stmnk commited on
Commit
0a58342
·
1 Parent(s): 9e410e3

add dfs simpler example

Browse files
Files changed (1) hide show
  1. app.py +13 -3
app.py CHANGED
@@ -4,7 +4,6 @@ import requests as req
4
 
5
  code_nl = "function for db connection"
6
 
7
- # CT5_URL = "https://api-inference.huggingface.co/models/nielsr/codet5-small-code-summarization-ruby"
8
  CT5_URL = "https://api-inference.huggingface.co/models/stmnk/codet5-small-code-summarization-python"
9
  CT5_METHOD = 'POST'
10
  API_URL = CT5_URL
@@ -15,6 +14,15 @@ def query(payload):
15
  return response.json()
16
 
17
 
 
 
 
 
 
 
 
 
 
18
  function_code = r"""
19
  def write_documents(self, documents: Union[List[dict], List[Document]], index: Optional[str] = None,
20
  batch_size: int = 10_000, duplicate_documents: Optional[str] = None):
@@ -71,7 +79,8 @@ def write_documents(self, documents: Union[List[dict], List[Document]], index: O
71
 
72
  """
73
 
74
- task_code = f' Summarize Python: {function_code}'
 
75
 
76
  real_docstring = r"""
77
  Indexes documents for later queries in Elasticsearch.
@@ -108,13 +117,14 @@ def docgen_func(function_code):
108
  return str(output)
109
 
110
  def pygen_func(nl_code_intent):
111
- pass # TODO: generate code PL from intent NL
112
  # inputs = {'code_nl': code_nl}
113
  # payload = json.dumps(inputs)
114
  # prediction = req.request(CT5_METHOD, CT5_URL, data=payload)
115
  # prediction = req.request(CT5_METHOD, CT5_URL, json=req_data)
116
  # answer = json.loads(prediction.content.decode("utf-8"))
117
  # return str(answer)
 
118
 
119
  iface = gr.Interface(
120
  # pygen_func,
 
4
 
5
  code_nl = "function for db connection"
6
 
 
7
  CT5_URL = "https://api-inference.huggingface.co/models/stmnk/codet5-small-code-summarization-python"
8
  CT5_METHOD = 'POST'
9
  API_URL = CT5_URL
 
14
  return response.json()
15
 
16
 
17
+ dfs_code = r"""
18
+ def dfs(visited, graph, node): #function for dfs
19
+ if node not in visited:
20
+ print (node)
21
+ visited.add(node)
22
+ for neighbour in graph[node]:
23
+ dfs(visited, graph, neighbour)
24
+ """
25
+
26
  function_code = r"""
27
  def write_documents(self, documents: Union[List[dict], List[Document]], index: Optional[str] = None,
28
  batch_size: int = 10_000, duplicate_documents: Optional[str] = None):
 
79
 
80
  """
81
 
82
+ # task_code = f' Summarize Python: {function_code}'
83
+ task_code = f' Summarize Python: {dfs_code}'
84
 
85
  real_docstring = r"""
86
  Indexes documents for later queries in Elasticsearch.
 
117
  return str(output)
118
 
119
  def pygen_func(nl_code_intent):
120
+ pass # TODO: generate code PL from intent NL + search in corpus
121
  # inputs = {'code_nl': code_nl}
122
  # payload = json.dumps(inputs)
123
  # prediction = req.request(CT5_METHOD, CT5_URL, data=payload)
124
  # prediction = req.request(CT5_METHOD, CT5_URL, json=req_data)
125
  # answer = json.loads(prediction.content.decode("utf-8"))
126
  # return str(answer)
127
+ # CT5_URL = "https://api-inference.huggingface.co/models/nielsr/codet5-small-code-summarization-ruby"
128
 
129
  iface = gr.Interface(
130
  # pygen_func,