Spaces:
Sleeping
Sleeping
File size: 5,587 Bytes
2f3b32c ab0e126 2f3b32c ab0e126 2f3b32c ab0e126 2f3b32c ace0051 2f3b32c ab0e126 2f3b32c ab0e126 2f3b32c ab0e126 2f3b32c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import os
import re
import gradio as gr
import edge_tts
import asyncio
import time
import tempfile
from huggingface_hub import InferenceClient
DESCRIPTION = """ # <center><b>JARVIS⚡</b></center>
### <center>A personal Assistant of Tony Stark for YOU
### <center>Currently It supports text input, But If this space completes 1k hearts than I starts working on Audio Input.</center>
"""
MORE = """ ## TRY Other Models
### Instant Video: Create Amazing Videos in 5 Second -> https://huggingface.co/spaces/KingNish/Instant-Video
### Instant Image: 4k images in 5 Second -> https://huggingface.co/spaces/KingNish/Instant-Image
"""
Fast = """## Fastest Model"""
Complex = """## Best in Complex Question"""
Detail = """## Best for Detailed Generation or Long Answers"""
client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
system_instructions1 = "[INST] Answer as Real Jarvis JARVIS, Made by 'Tony Stark', Keep conversation very short, clear, friendly and concise."
async def generate1(prompt):
generate_kwargs = dict(
temperature=0.6,
max_new_tokens=256,
top_p=0.95,
repetition_penalty=1,
do_sample=True,
seed=42,
)
formatted_prompt = system_instructions1 + prompt + "[/INST]"
stream = client1.text_generation(
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
output = ""
for response in stream:
output += response.token.text
communicate = edge_tts.Communicate(output)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
yield tmp_path
client2 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
system_instructions2 = "[SYSTEM] Answer as Real Jarvis JARVIS, Made by 'Tony Stark', Must answer in friendly style and Easy Manner. You can answer Complex Questions. Do not say who are you or Hi, Hello, Just Start answering. Stop, as answer ends. [USER]"
async def generate2(prompt):
generate_kwargs = dict(
temperature=0.6,
max_new_tokens=512,
top_p=0.95,
repetition_penalty=1,
do_sample=True,
)
formatted_prompt = system_instructions2 + prompt + "[ASSISTANT]"
stream = client2.text_generation(
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
output = ""
for response in stream:
output += response.token.text
communicate = edge_tts.Communicate(output)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
yield tmp_path
client3 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
system_instructions3 = "[SYSTEM] Answer as Real Jarvis JARVIS, Made by 'Tony Stark', Must answer in detailed and friendly. Do not say who are you or Hi, Hello, Just Start answering. You answers all things in detail.[USER]"
async def generate3(prompt):
generate_kwargs = dict(
temperature=0.6,
max_new_tokens=2048,
top_p=0.95,
repetition_penalty=1,
do_sample=True,
)
formatted_prompt = system_instructions3 + prompt + "[ASSISTANT]"
stream = client3.text_generation(
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
output = ""
for response in stream:
output += response.token.text
communicate = edge_tts.Communicate(output)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
yield tmp_path
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.Markdown(Fast)
with gr.Row():
user_input = gr.Textbox(label="Prompt")
input_text = gr.Textbox(label="Input Text", elem_id="important")
output_audio = gr.Audio(label="Audio", type="filepath",
interactive=False,
autoplay=True,
elem_classes="audio")
with gr.Row():
translate_btn = gr.Button("Response")
translate_btn.click(fn=generate1, inputs=user_input,
outputs=output_audio, api_name="translate")
gr.Markdown(Complex)
with gr.Row():
user_input = gr.Textbox(label="Prompt")
input_text = gr.Textbox(label="Input Text", elem_id="important")
output_audio = gr.Audio(label="Audio", type="filepath",
interactive=False,
autoplay=True,
elem_classes="audio")
with gr.Row():
translate_btn = gr.Button("Response")
translate_btn.click(fn=generate2, inputs=user_input,
outputs=output_audio, api_name="translate")
gr.Markdown(Detail)
with gr.Row():
user_input = gr.Textbox(label="Prompt")
input_text = gr.Textbox(label="Input Text", elem_id="important")
output_audio = gr.Audio(label="Audio", type="filepath",
interactive=False,
autoplay=True,
elem_classes="audio")
with gr.Row():
translate_btn = gr.Button("Response")
translate_btn.click(fn=generate3, inputs=user_input,
outputs=output_audio, api_name="translate")
gr.Markdown(MORE)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|