Spaces:
Build error
Build error
import copy | |
import math | |
from typing import List | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from module import commons | |
from module import modules | |
from module import attentions | |
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d | |
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm | |
from module.commons import init_weights, get_padding | |
from module.mrte_model import MRTE | |
from module.quantize import ResidualVectorQuantizer | |
from text import symbols | |
from torch.cuda.amp import autocast | |
class StochasticDurationPredictor(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
filter_channels, | |
kernel_size, | |
p_dropout, | |
n_flows=4, | |
gin_channels=0, | |
): | |
super().__init__() | |
filter_channels = in_channels # it needs to be removed from future version. | |
self.in_channels = in_channels | |
self.filter_channels = filter_channels | |
self.kernel_size = kernel_size | |
self.p_dropout = p_dropout | |
self.n_flows = n_flows | |
self.gin_channels = gin_channels | |
self.log_flow = modules.Log() | |
self.flows = nn.ModuleList() | |
self.flows.append(modules.ElementwiseAffine(2)) | |
for i in range(n_flows): | |
self.flows.append( | |
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3) | |
) | |
self.flows.append(modules.Flip()) | |
self.post_pre = nn.Conv1d(1, filter_channels, 1) | |
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1) | |
self.post_convs = modules.DDSConv( | |
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout | |
) | |
self.post_flows = nn.ModuleList() | |
self.post_flows.append(modules.ElementwiseAffine(2)) | |
for i in range(4): | |
self.post_flows.append( | |
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3) | |
) | |
self.post_flows.append(modules.Flip()) | |
self.pre = nn.Conv1d(in_channels, filter_channels, 1) | |
self.proj = nn.Conv1d(filter_channels, filter_channels, 1) | |
self.convs = modules.DDSConv( | |
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout | |
) | |
if gin_channels != 0: | |
self.cond = nn.Conv1d(gin_channels, filter_channels, 1) | |
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0): | |
x = torch.detach(x) | |
x = self.pre(x) | |
if g is not None: | |
g = torch.detach(g) | |
x = x + self.cond(g) | |
x = self.convs(x, x_mask) | |
x = self.proj(x) * x_mask | |
if not reverse: | |
flows = self.flows | |
assert w is not None | |
logdet_tot_q = 0 | |
h_w = self.post_pre(w) | |
h_w = self.post_convs(h_w, x_mask) | |
h_w = self.post_proj(h_w) * x_mask | |
e_q = ( | |
torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) | |
* x_mask | |
) | |
z_q = e_q | |
for flow in self.post_flows: | |
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w)) | |
logdet_tot_q += logdet_q | |
z_u, z1 = torch.split(z_q, [1, 1], 1) | |
u = torch.sigmoid(z_u) * x_mask | |
z0 = (w - u) * x_mask | |
logdet_tot_q += torch.sum( | |
(F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2] | |
) | |
logq = ( | |
torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q**2)) * x_mask, [1, 2]) | |
- logdet_tot_q | |
) | |
logdet_tot = 0 | |
z0, logdet = self.log_flow(z0, x_mask) | |
logdet_tot += logdet | |
z = torch.cat([z0, z1], 1) | |
for flow in flows: | |
z, logdet = flow(z, x_mask, g=x, reverse=reverse) | |
logdet_tot = logdet_tot + logdet | |
nll = ( | |
torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2]) | |
- logdet_tot | |
) | |
return nll + logq # [b] | |
else: | |
flows = list(reversed(self.flows)) | |
flows = flows[:-2] + [flows[-1]] # remove a useless vflow | |
z = ( | |
torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) | |
* noise_scale | |
) | |
for flow in flows: | |
z = flow(z, x_mask, g=x, reverse=reverse) | |
z0, z1 = torch.split(z, [1, 1], 1) | |
logw = z0 | |
return logw | |
class DurationPredictor(nn.Module): | |
def __init__( | |
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0 | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
self.filter_channels = filter_channels | |
self.kernel_size = kernel_size | |
self.p_dropout = p_dropout | |
self.gin_channels = gin_channels | |
self.drop = nn.Dropout(p_dropout) | |
self.conv_1 = nn.Conv1d( | |
in_channels, filter_channels, kernel_size, padding=kernel_size // 2 | |
) | |
self.norm_1 = modules.LayerNorm(filter_channels) | |
self.conv_2 = nn.Conv1d( | |
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2 | |
) | |
self.norm_2 = modules.LayerNorm(filter_channels) | |
self.proj = nn.Conv1d(filter_channels, 1, 1) | |
if gin_channels != 0: | |
self.cond = nn.Conv1d(gin_channels, in_channels, 1) | |
def forward(self, x, x_mask, g=None): | |
x = torch.detach(x) | |
if g is not None: | |
g = torch.detach(g) | |
x = x + self.cond(g) | |
x = self.conv_1(x * x_mask) | |
x = torch.relu(x) | |
x = self.norm_1(x) | |
x = self.drop(x) | |
x = self.conv_2(x * x_mask) | |
x = torch.relu(x) | |
x = self.norm_2(x) | |
x = self.drop(x) | |
x = self.proj(x * x_mask) | |
return x * x_mask | |
class TextEncoder(nn.Module): | |
def __init__( | |
self, | |
out_channels, | |
hidden_channels, | |
filter_channels, | |
n_heads, | |
n_layers, | |
kernel_size, | |
p_dropout, | |
latent_channels=192, | |
): | |
super().__init__() | |
self.out_channels = out_channels | |
self.hidden_channels = hidden_channels | |
self.filter_channels = filter_channels | |
self.n_heads = n_heads | |
self.n_layers = n_layers | |
self.kernel_size = kernel_size | |
self.p_dropout = p_dropout | |
self.latent_channels = latent_channels | |
self.ssl_proj = nn.Conv1d(768, hidden_channels, 1) | |
self.encoder_ssl = attentions.Encoder( | |
hidden_channels, | |
filter_channels, | |
n_heads, | |
n_layers // 2, | |
kernel_size, | |
p_dropout, | |
) | |
self.encoder_text = attentions.Encoder( | |
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout | |
) | |
self.text_embedding = nn.Embedding(len(symbols), hidden_channels) | |
self.mrte = MRTE() | |
self.encoder2 = attentions.Encoder( | |
hidden_channels, | |
filter_channels, | |
n_heads, | |
n_layers // 2, | |
kernel_size, | |
p_dropout, | |
) | |
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) | |
def forward(self, y, y_lengths, text, text_lengths, ge, test=None): | |
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to( | |
y.dtype | |
) | |
y = self.ssl_proj(y * y_mask) * y_mask | |
y = self.encoder_ssl(y * y_mask, y_mask) | |
text_mask = torch.unsqueeze( | |
commons.sequence_mask(text_lengths, text.size(1)), 1 | |
).to(y.dtype) | |
if test == 1: | |
text[:, :] = 0 | |
text = self.text_embedding(text).transpose(1, 2) | |
text = self.encoder_text(text * text_mask, text_mask) | |
y = self.mrte(y, y_mask, text, text_mask, ge) | |
y = self.encoder2(y * y_mask, y_mask) | |
stats = self.proj(y) * y_mask | |
m, logs = torch.split(stats, self.out_channels, dim=1) | |
return y, m, logs, y_mask | |
def extract_latent(self, x): | |
x = self.ssl_proj(x) | |
quantized, codes, commit_loss, quantized_list = self.quantizer(x) | |
return codes.transpose(0, 1) | |
def decode_latent(self, codes, y_mask, refer, refer_mask, ge): | |
quantized = self.quantizer.decode(codes) | |
y = self.vq_proj(quantized) * y_mask | |
y = self.encoder_ssl(y * y_mask, y_mask) | |
y = self.mrte(y, y_mask, refer, refer_mask, ge) | |
y = self.encoder2(y * y_mask, y_mask) | |
stats = self.proj(y) * y_mask | |
m, logs = torch.split(stats, self.out_channels, dim=1) | |
return y, m, logs, y_mask, quantized | |
class ResidualCouplingBlock(nn.Module): | |
def __init__( | |
self, | |
channels, | |
hidden_channels, | |
kernel_size, | |
dilation_rate, | |
n_layers, | |
n_flows=4, | |
gin_channels=0, | |
): | |
super().__init__() | |
self.channels = channels | |
self.hidden_channels = hidden_channels | |
self.kernel_size = kernel_size | |
self.dilation_rate = dilation_rate | |
self.n_layers = n_layers | |
self.n_flows = n_flows | |
self.gin_channels = gin_channels | |
self.flows = nn.ModuleList() | |
for i in range(n_flows): | |
self.flows.append( | |
modules.ResidualCouplingLayer( | |
channels, | |
hidden_channels, | |
kernel_size, | |
dilation_rate, | |
n_layers, | |
gin_channels=gin_channels, | |
mean_only=True, | |
) | |
) | |
self.flows.append(modules.Flip()) | |
def forward(self, x, x_mask, g=None, reverse=False): | |
if not reverse: | |
for flow in self.flows: | |
x, _ = flow(x, x_mask, g=g, reverse=reverse) | |
else: | |
for flow in reversed(self.flows): | |
x = flow(x, x_mask, g=g, reverse=reverse) | |
return x | |
class PosteriorEncoder(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
hidden_channels, | |
kernel_size, | |
dilation_rate, | |
n_layers, | |
gin_channels=0, | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.hidden_channels = hidden_channels | |
self.kernel_size = kernel_size | |
self.dilation_rate = dilation_rate | |
self.n_layers = n_layers | |
self.gin_channels = gin_channels | |
self.pre = nn.Conv1d(in_channels, hidden_channels, 1) | |
self.enc = modules.WN( | |
hidden_channels, | |
kernel_size, | |
dilation_rate, | |
n_layers, | |
gin_channels=gin_channels, | |
) | |
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) | |
def forward(self, x, x_lengths, g=None): | |
if g != None: | |
g = g.detach() | |
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to( | |
x.dtype | |
) | |
x = self.pre(x) * x_mask | |
x = self.enc(x, x_mask, g=g) | |
stats = self.proj(x) * x_mask | |
m, logs = torch.split(stats, self.out_channels, dim=1) | |
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask | |
return z, m, logs, x_mask | |
class WNEncoder(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
hidden_channels, | |
kernel_size, | |
dilation_rate, | |
n_layers, | |
gin_channels=0, | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.hidden_channels = hidden_channels | |
self.kernel_size = kernel_size | |
self.dilation_rate = dilation_rate | |
self.n_layers = n_layers | |
self.gin_channels = gin_channels | |
self.pre = nn.Conv1d(in_channels, hidden_channels, 1) | |
self.enc = modules.WN( | |
hidden_channels, | |
kernel_size, | |
dilation_rate, | |
n_layers, | |
gin_channels=gin_channels, | |
) | |
self.proj = nn.Conv1d(hidden_channels, out_channels, 1) | |
self.norm = modules.LayerNorm(out_channels) | |
def forward(self, x, x_lengths, g=None): | |
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to( | |
x.dtype | |
) | |
x = self.pre(x) * x_mask | |
x = self.enc(x, x_mask, g=g) | |
out = self.proj(x) * x_mask | |
out = self.norm(out) | |
return out | |
class Generator(torch.nn.Module): | |
def __init__( | |
self, | |
initial_channel, | |
resblock, | |
resblock_kernel_sizes, | |
resblock_dilation_sizes, | |
upsample_rates, | |
upsample_initial_channel, | |
upsample_kernel_sizes, | |
gin_channels=0, | |
): | |
super(Generator, self).__init__() | |
self.num_kernels = len(resblock_kernel_sizes) | |
self.num_upsamples = len(upsample_rates) | |
self.conv_pre = Conv1d( | |
initial_channel, upsample_initial_channel, 7, 1, padding=3 | |
) | |
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2 | |
self.ups = nn.ModuleList() | |
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): | |
self.ups.append( | |
weight_norm( | |
ConvTranspose1d( | |
upsample_initial_channel // (2**i), | |
upsample_initial_channel // (2 ** (i + 1)), | |
k, | |
u, | |
padding=(k - u) // 2, | |
) | |
) | |
) | |
self.resblocks = nn.ModuleList() | |
for i in range(len(self.ups)): | |
ch = upsample_initial_channel // (2 ** (i + 1)) | |
for j, (k, d) in enumerate( | |
zip(resblock_kernel_sizes, resblock_dilation_sizes) | |
): | |
self.resblocks.append(resblock(ch, k, d)) | |
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) | |
self.ups.apply(init_weights) | |
if gin_channels != 0: | |
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) | |
def forward(self, x, g=None): | |
x = self.conv_pre(x) | |
if g is not None: | |
x = x + self.cond(g) | |
for i in range(self.num_upsamples): | |
x = F.leaky_relu(x, modules.LRELU_SLOPE) | |
x = self.ups[i](x) | |
xs = None | |
for j in range(self.num_kernels): | |
if xs is None: | |
xs = self.resblocks[i * self.num_kernels + j](x) | |
else: | |
xs += self.resblocks[i * self.num_kernels + j](x) | |
x = xs / self.num_kernels | |
x = F.leaky_relu(x) | |
x = self.conv_post(x) | |
x = torch.tanh(x) | |
return x | |
def remove_weight_norm(self): | |
print("Removing weight norm...") | |
for l in self.ups: | |
remove_weight_norm(l) | |
for l in self.resblocks: | |
l.remove_weight_norm() | |
class DiscriminatorP(torch.nn.Module): | |
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False): | |
super(DiscriminatorP, self).__init__() | |
self.period = period | |
self.use_spectral_norm = use_spectral_norm | |
norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
self.convs = nn.ModuleList( | |
[ | |
norm_f( | |
Conv2d( | |
1, | |
32, | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(kernel_size, 1), 0), | |
) | |
), | |
norm_f( | |
Conv2d( | |
32, | |
128, | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(kernel_size, 1), 0), | |
) | |
), | |
norm_f( | |
Conv2d( | |
128, | |
512, | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(kernel_size, 1), 0), | |
) | |
), | |
norm_f( | |
Conv2d( | |
512, | |
1024, | |
(kernel_size, 1), | |
(stride, 1), | |
padding=(get_padding(kernel_size, 1), 0), | |
) | |
), | |
norm_f( | |
Conv2d( | |
1024, | |
1024, | |
(kernel_size, 1), | |
1, | |
padding=(get_padding(kernel_size, 1), 0), | |
) | |
), | |
] | |
) | |
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) | |
def forward(self, x): | |
fmap = [] | |
# 1d to 2d | |
b, c, t = x.shape | |
if t % self.period != 0: # pad first | |
n_pad = self.period - (t % self.period) | |
x = F.pad(x, (0, n_pad), "reflect") | |
t = t + n_pad | |
x = x.view(b, c, t // self.period, self.period) | |
for l in self.convs: | |
x = l(x) | |
x = F.leaky_relu(x, modules.LRELU_SLOPE) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
class DiscriminatorS(torch.nn.Module): | |
def __init__(self, use_spectral_norm=False): | |
super(DiscriminatorS, self).__init__() | |
norm_f = weight_norm if use_spectral_norm == False else spectral_norm | |
self.convs = nn.ModuleList( | |
[ | |
norm_f(Conv1d(1, 16, 15, 1, padding=7)), | |
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)), | |
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)), | |
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)), | |
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), | |
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)), | |
] | |
) | |
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1)) | |
def forward(self, x): | |
fmap = [] | |
for l in self.convs: | |
x = l(x) | |
x = F.leaky_relu(x, modules.LRELU_SLOPE) | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
class MultiPeriodDiscriminator(torch.nn.Module): | |
def __init__(self, use_spectral_norm=False): | |
super(MultiPeriodDiscriminator, self).__init__() | |
periods = [2, 3, 5, 7, 11] | |
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)] | |
discs = discs + [ | |
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods | |
] | |
self.discriminators = nn.ModuleList(discs) | |
def forward(self, y, y_hat): | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for i, d in enumerate(self.discriminators): | |
y_d_r, fmap_r = d(y) | |
y_d_g, fmap_g = d(y_hat) | |
y_d_rs.append(y_d_r) | |
y_d_gs.append(y_d_g) | |
fmap_rs.append(fmap_r) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
class ReferenceEncoder(nn.Module): | |
""" | |
inputs --- [N, Ty/r, n_mels*r] mels | |
outputs --- [N, ref_enc_gru_size] | |
""" | |
def __init__(self, spec_channels, gin_channels=0): | |
super().__init__() | |
self.spec_channels = spec_channels | |
ref_enc_filters = [32, 32, 64, 64, 128, 128] | |
K = len(ref_enc_filters) | |
filters = [1] + ref_enc_filters | |
convs = [ | |
weight_norm( | |
nn.Conv2d( | |
in_channels=filters[i], | |
out_channels=filters[i + 1], | |
kernel_size=(3, 3), | |
stride=(2, 2), | |
padding=(1, 1), | |
) | |
) | |
for i in range(K) | |
] | |
self.convs = nn.ModuleList(convs) | |
# self.wns = nn.ModuleList([weight_norm(num_features=ref_enc_filters[i]) for i in range(K)]) | |
out_channels = self.calculate_channels(spec_channels, 3, 2, 1, K) | |
self.gru = nn.GRU( | |
input_size=ref_enc_filters[-1] * out_channels, | |
hidden_size=256 // 2, | |
batch_first=True, | |
) | |
self.proj = nn.Linear(128, gin_channels) | |
def forward(self, inputs): | |
N = inputs.size(0) | |
out = inputs.view(N, 1, -1, self.spec_channels) # [N, 1, Ty, n_freqs] | |
for conv in self.convs: | |
out = conv(out) | |
# out = wn(out) | |
out = F.relu(out) # [N, 128, Ty//2^K, n_mels//2^K] | |
out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K] | |
T = out.size(1) | |
N = out.size(0) | |
out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K] | |
self.gru.flatten_parameters() | |
memory, out = self.gru(out) # out --- [1, N, 128] | |
return self.proj(out.squeeze(0)).unsqueeze(-1) | |
def calculate_channels(self, L, kernel_size, stride, pad, n_convs): | |
for i in range(n_convs): | |
L = (L - kernel_size + 2 * pad) // stride + 1 | |
return L | |
class Quantizer_module(torch.nn.Module): | |
def __init__(self, n_e, e_dim): | |
super(Quantizer_module, self).__init__() | |
self.embedding = nn.Embedding(n_e, e_dim) | |
self.embedding.weight.data.uniform_(-1.0 / n_e, 1.0 / n_e) | |
def forward(self, x): | |
d = ( | |
torch.sum(x**2, 1, keepdim=True) | |
+ torch.sum(self.embedding.weight**2, 1) | |
- 2 * torch.matmul(x, self.embedding.weight.T) | |
) | |
min_indicies = torch.argmin(d, 1) | |
z_q = self.embedding(min_indicies) | |
return z_q, min_indicies | |
class Quantizer(torch.nn.Module): | |
def __init__(self, embed_dim=512, n_code_groups=4, n_codes=160): | |
super(Quantizer, self).__init__() | |
assert embed_dim % n_code_groups == 0 | |
self.quantizer_modules = nn.ModuleList( | |
[ | |
Quantizer_module(n_codes, embed_dim // n_code_groups) | |
for _ in range(n_code_groups) | |
] | |
) | |
self.n_code_groups = n_code_groups | |
self.embed_dim = embed_dim | |
def forward(self, xin): | |
# B, C, T | |
B, C, T = xin.shape | |
xin = xin.transpose(1, 2) | |
x = xin.reshape(-1, self.embed_dim) | |
x = torch.split(x, self.embed_dim // self.n_code_groups, dim=-1) | |
min_indicies = [] | |
z_q = [] | |
for _x, m in zip(x, self.quantizer_modules): | |
_z_q, _min_indicies = m(_x) | |
z_q.append(_z_q) | |
min_indicies.append(_min_indicies) # B * T, | |
z_q = torch.cat(z_q, -1).reshape(xin.shape) | |
loss = 0.25 * torch.mean((z_q.detach() - xin) ** 2) + torch.mean( | |
(z_q - xin.detach()) ** 2 | |
) | |
z_q = xin + (z_q - xin).detach() | |
z_q = z_q.transpose(1, 2) | |
codes = torch.stack(min_indicies, -1).reshape(B, T, self.n_code_groups) | |
return z_q, loss, codes.transpose(1, 2) | |
def embed(self, x): | |
# idx: N, 4, T | |
x = x.transpose(1, 2) | |
x = torch.split(x, 1, 2) | |
ret = [] | |
for q, embed in zip(x, self.quantizer_modules): | |
q = embed.embedding(q.squeeze(-1)) | |
ret.append(q) | |
ret = torch.cat(ret, -1) | |
return ret.transpose(1, 2) # N, C, T | |
class CodePredictor(nn.Module): | |
def __init__( | |
self, | |
hidden_channels, | |
filter_channels, | |
n_heads, | |
n_layers, | |
kernel_size, | |
p_dropout, | |
n_q=8, | |
dims=1024, | |
ssl_dim=768, | |
): | |
super().__init__() | |
self.hidden_channels = hidden_channels | |
self.filter_channels = filter_channels | |
self.n_heads = n_heads | |
self.n_layers = n_layers | |
self.kernel_size = kernel_size | |
self.p_dropout = p_dropout | |
self.vq_proj = nn.Conv1d(ssl_dim, hidden_channels, 1) | |
self.ref_enc = modules.MelStyleEncoder( | |
ssl_dim, style_vector_dim=hidden_channels | |
) | |
self.encoder = attentions.Encoder( | |
hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout | |
) | |
self.out_proj = nn.Conv1d(hidden_channels, (n_q - 1) * dims, 1) | |
self.n_q = n_q | |
self.dims = dims | |
def forward(self, x, x_mask, refer, codes, infer=False): | |
x = x.detach() | |
x = self.vq_proj(x * x_mask) * x_mask | |
g = self.ref_enc(refer, x_mask) | |
x = x + g | |
x = self.encoder(x * x_mask, x_mask) | |
x = self.out_proj(x * x_mask) * x_mask | |
logits = x.reshape(x.shape[0], self.n_q - 1, self.dims, x.shape[-1]).transpose( | |
2, 3 | |
) | |
target = codes[1:].transpose(0, 1) | |
if not infer: | |
logits = logits.reshape(-1, self.dims) | |
target = target.reshape(-1) | |
loss = torch.nn.functional.cross_entropy(logits, target) | |
return loss | |
else: | |
_, top10_preds = torch.topk(logits, 10, dim=-1) | |
correct_top10 = torch.any(top10_preds == target.unsqueeze(-1), dim=-1) | |
top3_acc = 100 * torch.mean(correct_top10.float()).detach().cpu().item() | |
print("Top-10 Accuracy:", top3_acc, "%") | |
pred_codes = torch.argmax(logits, dim=-1) | |
acc = 100 * torch.mean((pred_codes == target).float()).detach().cpu().item() | |
print("Top-1 Accuracy:", acc, "%") | |
return pred_codes.transpose(0, 1) | |
class SynthesizerTrn(nn.Module): | |
""" | |
Synthesizer for Training | |
""" | |
def __init__( | |
self, | |
spec_channels, | |
segment_size, | |
inter_channels, | |
hidden_channels, | |
filter_channels, | |
n_heads, | |
n_layers, | |
kernel_size, | |
p_dropout, | |
resblock, | |
resblock_kernel_sizes, | |
resblock_dilation_sizes, | |
upsample_rates, | |
upsample_initial_channel, | |
upsample_kernel_sizes, | |
n_speakers=0, | |
gin_channels=0, | |
use_sdp=True, | |
semantic_frame_rate=None, | |
freeze_quantizer=None, | |
**kwargs | |
): | |
super().__init__() | |
self.spec_channels = spec_channels | |
self.inter_channels = inter_channels | |
self.hidden_channels = hidden_channels | |
self.filter_channels = filter_channels | |
self.n_heads = n_heads | |
self.n_layers = n_layers | |
self.kernel_size = kernel_size | |
self.p_dropout = p_dropout | |
self.resblock = resblock | |
self.resblock_kernel_sizes = resblock_kernel_sizes | |
self.resblock_dilation_sizes = resblock_dilation_sizes | |
self.upsample_rates = upsample_rates | |
self.upsample_initial_channel = upsample_initial_channel | |
self.upsample_kernel_sizes = upsample_kernel_sizes | |
self.segment_size = segment_size | |
self.n_speakers = n_speakers | |
self.gin_channels = gin_channels | |
self.use_sdp = use_sdp | |
self.enc_p = TextEncoder( | |
inter_channels, | |
hidden_channels, | |
filter_channels, | |
n_heads, | |
n_layers, | |
kernel_size, | |
p_dropout, | |
) | |
self.dec = Generator( | |
inter_channels, | |
resblock, | |
resblock_kernel_sizes, | |
resblock_dilation_sizes, | |
upsample_rates, | |
upsample_initial_channel, | |
upsample_kernel_sizes, | |
gin_channels=gin_channels, | |
) | |
self.enc_q = PosteriorEncoder( | |
spec_channels, | |
inter_channels, | |
hidden_channels, | |
5, | |
1, | |
16, | |
gin_channels=gin_channels, | |
) | |
self.flow = ResidualCouplingBlock( | |
inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels | |
) | |
self.ref_enc = modules.MelStyleEncoder( | |
spec_channels, style_vector_dim=gin_channels | |
) | |
ssl_dim = 768 | |
assert semantic_frame_rate in ["25hz", "50hz"] | |
self.semantic_frame_rate = semantic_frame_rate | |
if semantic_frame_rate == "25hz": | |
self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 2, stride=2) | |
else: | |
self.ssl_proj = nn.Conv1d(ssl_dim, ssl_dim, 1, stride=1) | |
self.quantizer = ResidualVectorQuantizer(dimension=ssl_dim, n_q=1, bins=1024) | |
if freeze_quantizer: | |
self.ssl_proj.requires_grad_(False) | |
self.quantizer.requires_grad_(False) | |
# self.enc_p.text_embedding.requires_grad_(False) | |
# self.enc_p.encoder_text.requires_grad_(False) | |
# self.enc_p.mrte.requires_grad_(False) | |
def forward(self, ssl, y, y_lengths, text, text_lengths): | |
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to( | |
y.dtype | |
) | |
ge = self.ref_enc(y * y_mask, y_mask) | |
with autocast(enabled=False): | |
ssl = self.ssl_proj(ssl) | |
quantized, codes, commit_loss, quantized_list = self.quantizer( | |
ssl, layers=[0] | |
) | |
if self.semantic_frame_rate == "25hz": | |
quantized = F.interpolate( | |
quantized, size=int(quantized.shape[-1] * 2), mode="nearest" | |
) | |
x, m_p, logs_p, y_mask = self.enc_p( | |
quantized, y_lengths, text, text_lengths, ge | |
) | |
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=ge) | |
z_p = self.flow(z, y_mask, g=ge) | |
z_slice, ids_slice = commons.rand_slice_segments( | |
z, y_lengths, self.segment_size | |
) | |
o = self.dec(z_slice, g=ge) | |
return ( | |
o, | |
commit_loss, | |
ids_slice, | |
y_mask, | |
y_mask, | |
(z, z_p, m_p, logs_p, m_q, logs_q), | |
quantized, | |
) | |
def infer(self, ssl, y, y_lengths, text, text_lengths, test=None, noise_scale=0.5): | |
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, y.size(2)), 1).to( | |
y.dtype | |
) | |
ge = self.ref_enc(y * y_mask, y_mask) | |
ssl = self.ssl_proj(ssl) | |
quantized, codes, commit_loss, _ = self.quantizer(ssl, layers=[0]) | |
if self.semantic_frame_rate == "25hz": | |
quantized = F.interpolate( | |
quantized, size=int(quantized.shape[-1] * 2), mode="nearest" | |
) | |
x, m_p, logs_p, y_mask = self.enc_p( | |
quantized, y_lengths, text, text_lengths, ge, test=test | |
) | |
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale | |
z = self.flow(z_p, y_mask, g=ge, reverse=True) | |
o = self.dec((z * y_mask)[:, :, :], g=ge) | |
return o, y_mask, (z, z_p, m_p, logs_p) | |
def decode(self, codes, text, refer, noise_scale=0.5): | |
ge = None | |
if refer is not None: | |
refer_lengths = torch.LongTensor([refer.size(2)]).to(refer.device) | |
refer_mask = torch.unsqueeze( | |
commons.sequence_mask(refer_lengths, refer.size(2)), 1 | |
).to(refer.dtype) | |
ge = self.ref_enc(refer * refer_mask, refer_mask) | |
y_lengths = torch.LongTensor([codes.size(2) * 2]).to(codes.device) | |
text_lengths = torch.LongTensor([text.size(-1)]).to(text.device) | |
quantized = self.quantizer.decode(codes) | |
if self.semantic_frame_rate == "25hz": | |
quantized = F.interpolate( | |
quantized, size=int(quantized.shape[-1] * 2), mode="nearest" | |
) | |
x, m_p, logs_p, y_mask = self.enc_p( | |
quantized, y_lengths, text, text_lengths, ge | |
) | |
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale | |
z = self.flow(z_p, y_mask, g=ge, reverse=True) | |
o = self.dec((z * y_mask)[:, :, :], g=ge) | |
return o | |
def batched_decode(self, codes, y_lengths, text, text_lengths, refer, noise_scale=0.5): | |
ge = None | |
if refer is not None: | |
refer_lengths = torch.LongTensor([refer.size(2)]).to(refer.device) | |
refer_mask = torch.unsqueeze( | |
commons.sequence_mask(refer_lengths, refer.size(2)), 1 | |
).to(refer.dtype) | |
ge = self.ref_enc(refer * refer_mask, refer_mask) | |
# y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, codes.size(2)), 1).to( | |
# codes.dtype | |
# ) | |
y_lengths = (y_lengths * 2).long().to(codes.device) | |
text_lengths = text_lengths.long().to(text.device) | |
# y_lengths = torch.LongTensor([codes.size(2) * 2]).to(codes.device) | |
# text_lengths = torch.LongTensor([text.size(-1)]).to(text.device) | |
# 假设padding之后再decode没有问题, 影响未知,但听起来好像没问题? | |
quantized = self.quantizer.decode(codes) | |
if self.semantic_frame_rate == "25hz": | |
quantized = F.interpolate( | |
quantized, size=int(quantized.shape[-1] * 2), mode="nearest" | |
) | |
x, m_p, logs_p, y_mask = self.enc_p( | |
quantized, y_lengths, text, text_lengths, ge | |
) | |
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale | |
z = self.flow(z_p, y_mask, g=ge, reverse=True) | |
z_masked = (z * y_mask)[:, :, :] | |
# 串行。把padding部分去掉再decode | |
o_list:List[torch.Tensor] = [] | |
for i in range(z_masked.shape[0]): | |
z_slice = z_masked[i, :, :y_lengths[i]].unsqueeze(0) | |
o = self.dec(z_slice, g=ge)[0, 0, :].detach() | |
o_list.append(o) | |
# 并行(会有问题)。先decode,再把padding的部分去掉 | |
# o = self.dec(z_masked, g=ge) | |
# upsample_rate = int(math.prod(self.upsample_rates)) | |
# o_lengths = y_lengths*upsample_rate | |
# o_list = [o[i, 0, :idx].detach() for i, idx in enumerate(o_lengths)] | |
return o_list | |
def extract_latent(self, x): | |
ssl = self.ssl_proj(x) | |
quantized, codes, commit_loss, quantized_list = self.quantizer(ssl) | |
return codes.transpose(0, 1) | |