fourier-draw / app.py
staghado's picture
Update app.py
cbcb276
raw
history blame
4.59 kB
import os
import io
import cv2
import matplotlib.animation as animation
import matplotlib.pyplot as plt
import numpy as np
import gradio as gr
from scipy.integrate import quad_vec
from math import tau
from PIL import Image
def fourier_transform_drawing(input_image, frames, coefficients, img_size):
"""
"""
# Convert PIL to OpenCV image(array)
input_image = np.array(input_image)
img = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR)
# processing
# resize the image to a smaller size for faster processing
dim = (img_size, img_size)
img = cv2.resize(img, dim, interpolation=cv2.INTER_AREA)
imgray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(imgray, (5, 5), 0)
(_, thresh) = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# find the contour with the largest area
largest_contour_idx = np.argmax([cv2.contourArea(c) for c in contours])
largest_contour = contours[largest_contour_idx]
verts = [tuple(coord) for coord in contours[largest_contour_idx].squeeze()]
xs, ys = zip(*verts)
xs, ys = np.asarray(xs), np.asarray(ys)
# calculate the range of xs and ys
x_range = np.max(xs) - np.min(xs)
y_range = np.max(ys) - np.min(ys)
# determine the scale factors
desired_range = 400
scale_x = desired_range / x_range
scale_y = desired_range / y_range
# apply scaling
# ys needs to be flipped vertically
xs = (xs - np.mean(xs)) * scale_x
ys = (-ys + np.mean(ys)) * scale_y
# compute the Fourier coefficients
num_points = 1000 # how many points to use for numerical integration
t_values = np.linspace(0, tau, num_points)
t_list = np.linspace(0, tau, len(xs))
def compute_cn(n, t_list, xs, ys):
"""
Integrate the contour along axis (-1) using the composite trapezoidal rule.
https://numpy.org/doc/stable/reference/generated/numpy.trapz.html#r7aa6c77779c0-2
"""
f_exp = np.interp(t, t_list, xs + 1j * ys) * np.exp(-n * t_values * 1j)
coef = np.trapz(f_exp, t_values) / tau
return coef
N = coefficients
coefs = [(compute_cn(0, t_list, xs, ys), 0)] + [(compute_cn(j, t_list, xs, ys), j) for i in range(1, N+1) for j in (i, -i)]
# animate the drawings
fig, ax = plt.subplots()
circles = [ax.plot([], [], 'b-')[0] for _ in range(-N, N+1)]
circle_lines = [ax.plot([], [], 'g-')[0] for _ in range(-N, N+1)]
drawing, = ax.plot([], [], 'r-', linewidth=2)
ax.set_xlim(-desired_range, desired_range)
ax.set_ylim(-desired_range, desired_range)
ax.set_axis_off()
ax.set_aspect('equal')
fig.set_size_inches(15, 15)
draw_x, draw_y = [], []
def animate(i, coefs, time):
t = time[i]
center = (0, 0)
theta = np.linspace(0, tau, 80)
for c, fr in coefs:
c = c * np.exp(1j*(fr * tau * t)
r = np.linalg.norm(c)
x, y = center[0] + r * np.cos(theta), center[1] + r * np.sin(theta)
circle_lines[_].set_data([center[0], center[0 ]+ np.real(c)], [center[1], center[1] + np.imag(c)])
circles[_].set_data(x, y)
center = (center[0] + np.real(c), center[1] + np.imag(c))
draw_x.append(center[0])
draw_y.append(center[1])
drawing.set_data(draw_x[:i+1], draw_y[:i+1])
drawing_time = 1
time = np.linspace(0, drawing_time, num=frames)
anim = animation.FuncAnimation(fig, animate, frames=frames, interval=5, fargs=(coefs, time))
# save the animation as an MP4 file
output_animation = "output.mp4"
anim.save(output_animation, fps=15)
plt.close(fig)
return output_animation
# Gradio interface
interface = gr.Interface(
fn=fourier_transform_drawing,
inputs=[
gr.Image(label="Input Image", sources=['upload'], type="pil"),
gr.Slider(minimum=5, maximum=500, value=100, label="Number of Frames"),
gr.Slider(minimum=1, maximum=500, value=50, label="Number of Coefficients"),
gr.Number(value=224, label="Image size", precision=0)
],
outputs=gr.Video(),
title="Fourier Transform Drawing",
description="Upload an image and generate a Fourier Transform drawing animation. You can find out more about the project here : https://github.com/staghado/fourier-draw",
examples=[["Fourier2.jpg", 100, 100, 224], ["Luffy.png", 150, 200, 224]]
)
if __name__ == "__main__":
interface.launch()