Spaces:
Running
Running
import os | |
import io | |
import cv2 | |
import matplotlib.animation as animation | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import gradio as gr | |
from scipy.integrate import quad_vec | |
from math import tau | |
from PIL import Image | |
def fourier_transform_drawing(input_image, frames, coefficients): | |
# Convert PIL to OpenCV image(array) | |
input_image = np.array(input_image) | |
img = cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR) | |
# processing | |
imgray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
blurred = cv2.GaussianBlur(imgray, (7, 7), 0) | |
# apply Otsu threshold | |
(_, thresh) = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU) | |
# find contours of the binary image | |
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) | |
# take only the largest contour | |
largest_contour_idx = np.argmax([len(c) for c in contours]) | |
verts = [tuple(coord) for coord in contours[largest_contour_idx].squeeze()] | |
xs, ys = zip(*verts) | |
# calculate the range of xs and ys | |
x_range = np.max(xs) - np.min(xs) | |
y_range = np.max(ys) - np.min(ys) | |
# determine the scale factors | |
desired_range = 400 | |
scale_factor_x = desired_range / x_range | |
scale_factor_y = desired_range / y_range | |
# apply scaling | |
# ys needs to be flipped vertically | |
xs = (np.asarray(xs) - np.mean(xs)) * scale_factor_x | |
ys = (-np.asarray(ys) + np.mean(ys)) * scale_factor_y | |
t_list = np.linspace(0, tau, len(xs)) | |
# Compute the Fourier coefficients | |
def f(t, t_list, xs, ys): | |
return np.interp(t, t_list, xs + 1j*ys) | |
def compute_cn(f, n): | |
coef = 1/tau*quad_vec( | |
lambda t: f(t, t_list, xs, ys)*np.exp(-n*t*1j), | |
0, | |
tau, | |
limit=100, | |
full_output=False)[0] | |
return coef | |
N = coefficients | |
coefs = [(compute_cn(f, 0), 0)] + [(compute_cn(f, j), j) for i in range(1, N+1) for j in (i, -i)] | |
# animate the drawings | |
fig, ax = plt.subplots() | |
circles = [ax.plot([], [], 'b-')[0] for _ in range(-N, N+1)] | |
circle_lines = [ax.plot([], [], 'g-')[0] for _ in range(-N, N+1)] | |
drawing, = ax.plot([], [], 'r-', linewidth=2) | |
ax.set_xlim(-desired_range, desired_range) | |
ax.set_ylim(-desired_range, desired_range) | |
ax.set_axis_off() | |
#ax.set_aspect('equal') | |
#fig.set_size_inches(15, 15) | |
draw_x, draw_y = [], [] | |
def animate(i, coefs, time): | |
t = time[i] | |
coefs = [(c * np.exp(1j*(fr * tau * t)), fr) for c, fr in coefs] | |
center = (0, 0) | |
for c, _ in coefs: | |
r = np.linalg.norm(c) | |
theta = np.linspace(0, tau, 80) | |
x, y = center[0] + r * np.cos(theta), center[1] + r * np.sin(theta) | |
circle_lines[_].set_data([center[0], center[0 ]+ np.real(c)], [center[1], center[1] + np.imag(c)]) | |
circles[_].set_data(x, y) | |
center = (center[0] + np.real(c), center[1] + np.imag(c)) | |
draw_x.append(center[0]) | |
draw_y.append(center[1]) | |
drawing.set_data(draw_x, draw_y) | |
drawing_time = 1 | |
time = np.linspace(0, drawing_time, num=frames) | |
anim = animation.FuncAnimation(fig, animate, frames=frames, interval=5, fargs=(coefs, time)) | |
# save the animation as an MP4 file | |
output_animation = "output.mp4" | |
anim.save(output_animation, fps=15) | |
plt.close(fig) | |
# return the path to the MP4 file | |
return output_animation | |
# Gradio interface | |
interface = gr.Interface( | |
fn=fourier_transform_drawing, | |
inputs=[ | |
gr.Image(label="Input Image", sources=['upload'], type="pil"), | |
gr.Slider(minimum=5, maximum=500, value=50, label="Number of Frames"), | |
gr.Slider(minimum=1, maximum=500, value=50, label="Number of Coefficients") | |
], | |
outputs=gr.Video(), | |
title="Fourier Transform Drawing", | |
description="Upload an image and generate a Fourier Transform drawing animation." | |
examples=[["Fourier2.jpg", 100, 25]] | |
) | |
if __name__ == "__main__": | |
interface.launch(cache_examples=True) |