Spaces:
Running
Running
import numpy as np | |
import matplotlib.pyplot as plt | |
import matplotlib.animation as animation | |
from PIL import Image | |
import io | |
import cv2 | |
from math import tau | |
import gradio as gr | |
from concurrent.futures import ThreadPoolExecutor | |
def fourier_transform_drawing(input_image, frames, coefficients, img_size, blur_kernel_size, desired_range, num_points, theta_points): | |
# Convert PIL to OpenCV image | |
img = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR) | |
img = cv2.resize(img, (img_size, img_size), interpolation=cv2.INTER_AREA) | |
imgray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
blurred = cv2.GaussianBlur(imgray, (blur_kernel_size, blur_kernel_size), 0) | |
_, thresh = cv2.threshold(blurred, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU) | |
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) | |
# find the contour with the largest area | |
largest_contour_idx = np.argmax([cv2.contourArea(c) for c in contours]) | |
largest_contour = contours[largest_contour_idx] | |
# def combine_all_contours(contours): | |
# combined_contour = np.array([], dtype=np.int32).reshape(0, 1, 2) | |
# for contour in contours: | |
# combined_contour = np.vstack((combined_contour, contour)) | |
# return combined_contour | |
# largest_contour = combine_all_contours(contours) | |
verts = [tuple(coord) for coord in largest_contour.squeeze()] | |
xs, ys = np.asarray(list(zip(*verts))) | |
x_range, y_range = np.max(xs) - np.min(xs), np.max(ys) - np.min(ys) | |
scale_x, scale_y = desired_range / x_range, desired_range / y_range | |
xs = (xs - np.mean(xs)) * scale_x | |
ys = (-ys + np.mean(ys)) * scale_y | |
t_list = np.linspace(0, tau, len(xs)) | |
t_values = np.linspace(0, tau, num_points) | |
f_precomputed = np.interp(t_values, t_list, xs + 1j * ys) | |
def compute_cn(f_exp, n, t_values): | |
coef = np.trapz(f_exp * np.exp(-n * t_values * 1j), t_values) / tau | |
return coef | |
N = coefficients | |
indices = [0] + [j for i in range(1, N + 1) for j in (i, -i)] | |
with ThreadPoolExecutor(max_workers=8) as executor: | |
coefs = list(executor.map(lambda n: (compute_cn(f_precomputed, n, t_values), n), indices)) | |
fig, ax = plt.subplots() | |
circles = [ax.plot([], [], 'b-')[0] for _ in range(-N, N + 1)] | |
circle_lines = [ax.plot([], [], 'g-')[0] for _ in range(-N, N + 1)] | |
drawing, = ax.plot([], [], 'r-', linewidth=2) | |
ax.set_xlim(-desired_range, desired_range) | |
ax.set_ylim(-desired_range, desired_range) | |
ax.set_axis_off() | |
ax.set_aspect('equal') | |
fig.set_size_inches(15, 15) | |
draw_x, draw_y = [], [] | |
theta = np.linspace(0, tau, theta_points) | |
coefs_static = [(np.linalg.norm(c), fr) for c, fr in coefs] | |
def animate(i, coefs, time): | |
center = (0, 0) | |
for idx, (r, fr) in enumerate(coefs_static): | |
c_dynamic = coefs[idx][0] * np.exp(1j * (fr * tau * time[i])) | |
x, y = center[0] + r * np.cos(theta), center[1] + r * np.sin(theta) | |
circle_lines[idx].set_data([center[0], center[0] + np.real(c_dynamic)], [center[1], center[1] + np.imag(c_dynamic)]) | |
circles[idx].set_data(x, y) | |
center = (center[0] + np.real(c_dynamic), center[1] + np.imag(c_dynamic)) | |
draw_x.append(center[0]) | |
draw_y.append(center[1]) | |
drawing.set_data(draw_x[:i+1], draw_y[:i+1]) | |
# Capture the current plot as an image | |
buf = io.BytesIO() | |
plt.savefig(buf, format='png', bbox_inches='tight') | |
buf.seek(0) | |
image = np.array(Image.open(buf)) | |
# Yield the current image and a placeholder for the final animation | |
yield (image, None) | |
# Generate and yield images for each frame | |
for frame in range(frames): | |
yield from animate(frame, coefs, np.linspace(0, 1, num=frames)) | |
# Generate final animation as GIF | |
with tempfile.NamedTemporaryFile(delete=False, suffix='.gif') as temp_file: | |
anim = animation.FuncAnimation(fig, animate, frames=frames, interval=5, fargs=(coefs, np.linspace(0, 1, num=frames))) | |
anim.save(temp_file.name, fps=15) | |
# Read the final GIF | |
with open(temp_file.name, 'rb') as gif_file: | |
final_gif = np.array(Image.open(io.BytesIO(gif_file.read()))) | |
# Remove the temporary file | |
os.remove(temp_file.name) | |
# Yield the final GIF in place of the last frame | |
yield (image, final_gif) | |
# Gradio interface setup | |
interface = gr.Interface( | |
fn=fourier_transform_drawing, | |
inputs=[ | |
gr.Image(label="Input Image", sources=['upload'], type="pil"), | |
gr.Slider(minimum=5, maximum=500, value=100, label="Number of Frames"), | |
gr.Slider(minimum=1, maximum=500, value=50, label="Number of Coefficients"), | |
gr.Number(value=224, label="Image Size (px)", precision=0), | |
gr.Slider(minimum=3, maximum=11, step=2, value=5, label="Blur Kernel Size (odd number)"), | |
gr.Number(value=400, label="Desired Range for Scaling", precision=0), | |
gr.Number(value=1000, label="Number of Points for Integration", precision=0), | |
gr.Slider(minimum=50, maximum=500, value=80, label="Theta Points for Animation") | |
], | |
outputs=["image", "image"], | |
title="Fourier Transform Drawing", | |
description="Upload an image and generate a Fourier Transform drawing animation.", | |
) | |
if __name__ == "__main__": | |
interface.launch() |