|
import json |
|
import os |
|
import logging |
|
from datetime import datetime, timezone |
|
from typing import Dict, Tuple, Optional, Any |
|
|
|
from src.display.formatting import styled_error, styled_message, styled_warning |
|
from src.envs import API |
|
from src.submission.check_validity import ( |
|
already_submitted_models, |
|
check_model_card, |
|
get_model_size, |
|
is_model_on_hub, |
|
check_safetensors_format, |
|
) |
|
from src.config import ( |
|
API_TOKEN, |
|
QUEUE_REPO, |
|
EVAL_REQUESTS_PATH, |
|
ALLOWED_WEIGHT_TYPES, |
|
DEFAULT_REVISION, |
|
LOG_LEVEL, |
|
EVALUATION_WAIT_TIME |
|
) |
|
|
|
REQUESTED_MODELS: Optional[Dict[str, Any]] = None |
|
USERS_TO_SUBMISSION_DATES: Optional[Dict[str, Any]] = None |
|
|
|
logging.basicConfig(level=getattr(logging, LOG_LEVEL)) |
|
logger = logging.getLogger(__name__) |
|
|
|
def validate_input(model_type: Optional[str], weight_type: str) -> Optional[str]: |
|
"""Validate input parameters.""" |
|
if model_type is None or model_type == "": |
|
return styled_error("Please select a model type.") |
|
if weight_type not in ALLOWED_WEIGHT_TYPES: |
|
return styled_error(f"Invalid weight type. Must be one of: {', '.join(ALLOWED_WEIGHT_TYPES)}") |
|
if weight_type != "Safetensors" and weight_type != "GGUF": |
|
return styled_error( |
|
"Only Safetensors format is accepted for new submissions (or GGUF for quantized models). Please convert your model using:\n" |
|
"```python\n" |
|
"from transformers import AutoModelForCausalLM\n" |
|
"from safetensors.torch import save_file\n\n" |
|
"model = AutoModelForCausalLM.from_pretrained('your-model')\n" |
|
"state_dict = model.state_dict()\n" |
|
"save_file(state_dict, 'model.safetensors')\n" |
|
"```" |
|
) |
|
return None |
|
|
|
def check_model_existence(model: str, revision: str, token: str) -> Optional[str]: |
|
"""Check if the model exists on the hub.""" |
|
if revision == "": |
|
revision = DEFAULT_REVISION |
|
model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=token, test_tokenizer=True) |
|
if not model_on_hub: |
|
return styled_error(f'Model "{model}" {error}') |
|
return None |
|
|
|
def get_model_information(model: str, revision: str, weight_type: str) -> Tuple[Optional[Any], Optional[str]]: |
|
"""Get model information and perform necessary checks.""" |
|
if weight_type != "GGUF": |
|
safetensors_ok, error_msg = check_safetensors_format(model, revision, API_TOKEN) |
|
if not safetensors_ok: |
|
return None, styled_error(error_msg) |
|
|
|
try: |
|
model_info = API.model_info(repo_id=model, revision=revision) |
|
except Exception as e: |
|
logger.error(f"Failed to get model info: {e}") |
|
return None, styled_error("Could not get your model information. Please fill it up properly.") |
|
|
|
try: |
|
license = model_info.cardData["license"] |
|
except Exception as e: |
|
logger.error(f"Failed to get license info: {e}") |
|
return None, styled_error("Please select a license for your model") |
|
|
|
modelcard_OK, error_msg = check_model_card(model) |
|
if not modelcard_OK: |
|
return None, styled_error(error_msg) |
|
|
|
return model_info, None |
|
|
|
def create_eval_entry(model: str, base_model: str, revision: str, precision: str, weight_type: str, model_type: str, model_info: Any, model_size: float) -> Dict[str, Any]: |
|
"""Create the evaluation entry dictionary.""" |
|
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ") |
|
return { |
|
"model": model, |
|
"base_model": base_model, |
|
"revision": revision, |
|
"precision": precision, |
|
"weight_type": weight_type, |
|
"status": "PENDING", |
|
"submitted_time": current_time, |
|
"model_type": model_type, |
|
"likes": model_info.likes, |
|
"params": model_size, |
|
"license": model_info.cardData["license"], |
|
"private": False, |
|
} |
|
|
|
def add_new_eval( |
|
model: str, |
|
base_model: str, |
|
revision: str, |
|
precision: str, |
|
weight_type: str, |
|
model_type: str, |
|
) -> str: |
|
""" |
|
Add a new model evaluation request to the queue. |
|
|
|
Args: |
|
model (str): The name of the model to evaluate. |
|
base_model (str): The name of the base model (for delta or adapter weights). |
|
revision (str): The revision of the model to evaluate. |
|
precision (str): The precision of the model weights. |
|
weight_type (str): The format of the model weights. |
|
model_type (str): The type of the model. |
|
|
|
Returns: |
|
str: A message indicating the result of the evaluation request. |
|
""" |
|
global REQUESTED_MODELS |
|
global USERS_TO_SUBMISSION_DATES |
|
global EVAL_REQUESTS_PATH |
|
|
|
|
|
if not EVAL_REQUESTS_PATH or EVAL_REQUESTS_PATH == "YOUR_EVAL_REQUESTS_PATH_HERE": |
|
return styled_error("EVAL_REQUESTS_PATH is not properly configured. Please check your configuration.") |
|
|
|
|
|
if not EVAL_REQUESTS_PATH.endswith('eval-queue'): |
|
EVAL_REQUESTS_PATH = os.path.join(EVAL_REQUESTS_PATH, 'eval-queue') |
|
|
|
|
|
if not all([model, revision, precision, weight_type, model_type]): |
|
return styled_error("All fields except base_model are required.") |
|
|
|
if not REQUESTED_MODELS: |
|
REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH) |
|
|
|
user_name, model_path = model.split("/") if "/" in model else ("", model) |
|
precision = precision.split(" ")[0] |
|
|
|
error = validate_input(model_type, weight_type) |
|
if error: |
|
return error |
|
|
|
error = check_model_existence(model, revision, API_TOKEN) |
|
if error: |
|
return error |
|
|
|
model_info, error = get_model_information(model, revision, weight_type) |
|
if error: |
|
return error |
|
|
|
model_size = get_model_size(model_info=model_info, precision=precision) |
|
|
|
eval_entry = create_eval_entry(model, base_model, revision, precision, weight_type, model_type, model_info, model_size) |
|
|
|
|
|
if f"{model}_{revision}_{precision}" in REQUESTED_MODELS: |
|
return styled_warning("This model has been already submitted.") |
|
|
|
logger.info("Creating eval file") |
|
OUT_DIR = os.path.join(EVAL_REQUESTS_PATH, user_name) |
|
os.makedirs(OUT_DIR, exist_ok=True) |
|
out_path = os.path.join(OUT_DIR, f"{model_path}_eval_request_False_{precision}_{weight_type}.json") |
|
|
|
try: |
|
with open(out_path, "w") as f: |
|
json.dump(eval_entry, f) |
|
except IOError as e: |
|
logger.error(f"Failed to write eval file: {e}") |
|
return styled_error(f"Failed to create eval file: {e}") |
|
|
|
logger.info("Uploading eval file") |
|
try: |
|
|
|
rel_path = os.path.relpath(out_path, EVAL_REQUESTS_PATH) |
|
|
|
API.upload_file( |
|
path_or_fileobj=out_path, |
|
path_in_repo=rel_path, |
|
repo_id=QUEUE_REPO, |
|
repo_type="dataset", |
|
commit_message=f"Add {model} to eval queue", |
|
) |
|
except Exception as e: |
|
logger.error(f"Failed to upload eval file: {e}") |
|
return styled_error(f"Failed to upload eval file: {e}") |
|
|
|
|
|
try: |
|
os.remove(out_path) |
|
except OSError as e: |
|
logger.warning(f"Failed to remove local eval file: {e}") |
|
|
|
return styled_message( |
|
f"Your request has been submitted to the evaluation queue!\n" |
|
f"The model will be evaluated for:\n" |
|
f"1. Safetensors compliance\n" |
|
f"2. Security awareness using the stacklok/insecure-code dataset\n" |
|
f"Please wait for up to {EVALUATION_WAIT_TIME} minutes for the model to show in the PENDING list." |
|
) |
|
|